Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic el...Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.展开更多
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high over-all abundance of precursors, their even geographical distribution, and low cost. Na3V2(PO4)3 (NVP), atypi...Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high over-all abundance of precursors, their even geographical distribution, and low cost. Na3V2(PO4)3 (NVP), atypical sodium super ion conductor (NASlCON)-based electrode material, exhibits pronounced structuralstability, exceptionally high ion conductivity, rendering it a most promising electrode for sodium storage.However. the comparatively low electronic conductivity makes the theoretical capacity of NVP cannot befully accessible even at comparatively low rates, presenting a major drawback for further practical ap-plications, especially when high rate capability is especially important. Thus, many endeavors have beenconformed to increase the surface and intrinsic electrical conductivity of NVP by coating the active mate-rials with a conductive carbon layer, downsizing the NVP particles, combining the NVP particle with vari-ous carbon materials and ion doping strategy. In this review, to get a better understanding on the sodiumstorage in NVP, we firstly present 4 distinct crystal structures in the temperature range of-30℃-225℃ namely α-NVP, β-NVP, β′-NVP and γ-NVP. Moreover, we give an overview of recent approaches to en-hance the surface electrical conductivity and intrinsic electrical conductivity of NVP. Finally, some poten-tial applications of NVP such as in all-climate environment and PHEV, EV fields have been prospected.展开更多
Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials...Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.展开更多
As the service life of the electric bicycle' s storage battery is shortened due to the long-term floating charge, an automatic power- off circuit for the storage battery of electric bicycle is designed, and also the ...As the service life of the electric bicycle' s storage battery is shortened due to the long-term floating charge, an automatic power- off circuit for the storage battery of electric bicycle is designed, and also the composition and design of the circuit are specifically expounded. After a test, the circuit can achieve a desired effect. Therefore, it can prolong the service life of the electric bicycle' s storage battery and save electric energy in the actual applications.展开更多
Sodium-ion batteries(SIBs)are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance.However,there are still challenges in develo...Sodium-ion batteries(SIBs)are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance.However,there are still challenges in developing desirable anode materials that can accommodate rapid and stable insertion/extraction of Na+and can exhibit excellent electrochemical performance.Herein,the self-assembled hairball-like VS4 as anodes of SIBs exhibits high discharge capacity(660 and 589 mAh g−1 at 1 and 3 A g−1,respectively)and excellent rate property(about 100%retention at 10 and 20 A g−1 after 1000 cycles)at room temperature.Moreover,the VS4 can also exhibit 591 mAh g−1 at 1 A g−1 after 600 cycles at 0°C.An unlike traditional mechanism of VS4 for Na+storage was proposed according to the dates of ex situ characterization,cyclic voltammetry,and electrochemical kinetic analysis.The capacities of the final stabilization stage are provided by the reactions of reversible transformation between Na2S and S,which were considered the reaction mechanisms of Na–S batteries.This work can provide a basis for the synthesis and application of sulfur-rich compounds in fields of batteries,semiconductor devices,and catalysts.展开更多
Here,we report the synthesis of hard carbon materials(RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries.The studies show that the electrochemi...Here,we report the synthesis of hard carbon materials(RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries.The studies show that the electrochemical properties of RHs are affected by the treatment temperatures,which determine the materials morphology,in particular,their degree of graphitization and extent of continuous channels(nanovoids).The latter are accessible to sodium ions and significantly contribute to charge storage capacity of the produced anodes.The RHs obtained at 1600 °C deliver the highest reversible capacity of276 mAh g^(-1) mainly due to insertion of sodium ions into the nanovoids.This work deepens the basic understanding of the influence of the carbonization temperature on the sodium storage mechanism.展开更多
Flexible energy storage devices are essential for emerging flexible electronics. The existing state-of-the-art Li-ion batteries are slowly reaching their limitation in terms of cost and energy density. Hence, flexible...Flexible energy storage devices are essential for emerging flexible electronics. The existing state-of-the-art Li-ion batteries are slowly reaching their limitation in terms of cost and energy density. Hence, flexible Na-ion batteries (SIBs) with abundanee Na resources and Li-S batteries with high energy density become the alternative for the Li-ion batteries in future. This review summarizes the recent advances in the development of flexible electrode materials for SIBs with metallic matrix and carb on aceous matrix such as carb on nano-tubes, carbon nano-fiber, graphene, carbon cloth, carbon fiber cloth, and cotton textiles. Then, the potential prototype flexible full SIBs are discussed. Further, the recent progress in the development of flexible electrode materials for Li-S batteries based on carb on nano-fiber, carb on nano-tubes, graphene, and cotton textiles is reviewed. Moreover, the design strategies of suitable interlayer, separator, electrolyte, and electrodes to prevent the dissolution and shuttle effect of polysulfides in flexible Li-S batteries are provided. Finally some prospective investigation trends towards future research of flexible SIBs and Li-S batteries are also proposed and discussed. The scientific and engineering knowledge gained on flexible SIBs and Li-S batteries provides conceivable development for practical application in near future.展开更多
The development of reliable and affordable all-solid-state sodium metal batteries(ASS-SMBs)requires suitable solid-state electrolytes with cost-efficient processing and stabilized electrode/electrolyte interfaces.Here...The development of reliable and affordable all-solid-state sodium metal batteries(ASS-SMBs)requires suitable solid-state electrolytes with cost-efficient processing and stabilized electrode/electrolyte interfaces.Here,an integrated porous/dense/porous Na_(5)YSi_(4)O_(12)(NYS)trilayered scaffold is designed and fabricated by tape casting using aqueous slurries.In this template-based NYS scaffold,the dense layer in the middle serves as a separator and the porous layers on both sides accommodate the active materials with their volume changes during the charge/discharge processes,increasing the contact area and thus enhancing the utilization rate and homogenizing the current distribution.The Na/NYS/Na symmetric cells with the Pb-coated NYS scaffold exhibit significantly reduced interfacial impedance and superior critical current density of up to 3.0 mA cm^(-2)against Na metal owing to enhanced wettability.Furthermore,the assembled Na/NYS/S full cells operated without external pressure at room temperature showed a high initial discharge capacity of 970 mAh g^(-1)and good cycling stability with a capacity of 600 mAh g^(-1)after 150 cycles(based on the mass of sulfur).This approach paves the way for the realization of economical and practical ASS-SMBs from the perspective of ceramic manufacturing.展开更多
Energy storage system plays an important role in smart grid. Analyzing from the view of existing status and problems facing Shanghai grid, the article puts forward the necessity of applying energy storage technology i...Energy storage system plays an important role in smart grid. Analyzing from the view of existing status and problems facing Shanghai grid, the article puts forward the necessity of applying energy storage technology in a large urban grid and the achievements in the key technologies in Shanghai grid. As a comprehensive demonstration base for the pilot project of smart grid in Expo 2010 by the State Grid, the Shanghai Caoxi Energy Conversion Comprehensive Exhibit Station is also introduced in detail.展开更多
Battery energy storage systems(BESS)are instrumental in the transition to a low carbon electrical network with enhanced flexibility,however,the set objective can be accomplished only through suitable scheduling of the...Battery energy storage systems(BESS)are instrumental in the transition to a low carbon electrical network with enhanced flexibility,however,the set objective can be accomplished only through suitable scheduling of their operation.This paper develops a dynamic optimal power flow(DOPF)-based scheduling framework to optimize the day(s)-ahead operation of a grid-scale BESS aiming to mitigate the predicted limits on the renewable energy generation as well as smooth out the network demand to be supplied by conventional generators.In DOPF,all the generating units,including the ones that model the exports and imports of the BESS,across the entire network and the complete time horizon are integrated on to a single network.Subsequently,an AC-OPF is applied to dispatch their power outputs to minimize the total generation cost,while satisfying the power balance equations,and handling the unit and network constraints at each time step coupled with intertemporal constraints associated with the state of charge(SOC).Furthermore,the DOPF developed here entails the frequently applied constant current-constant voltage charging profile,which is represented in the SOC domain.Considering the practical application of a 1 MW BESS on a particular 33 kV network,the scheduling framework is designed to meet the pragmatic requirements of the optimum utilization of the available energy capacity of BESS in each cycle,while completing up to one cycle per day.展开更多
Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes...Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes(ICMs)that provide high ion selectivity,proton conductivity,and stability under rigorous condition.Herein,a‘side-chain-type’strategy has been employed to fabricate highly stable phenolphthalein-based cardo poly(arylene ether ketone)s(PAEKs)membrane with low area resistance(0.058Ωcm^(2)),in which flexible alkyl spacers effectively alleviated inductive withdrawing effect from terminal ion exchange groups thus enabling a stable backbone.The assembled VFBs based on PAEKs bearing pendent alkyl chain terminated with quaternary ammonium(Q-PPhEK)demonstrated an energy efficiency above 80%over 700 cycles at 160 mA/cm^(2).Such a remarkable results revealed that the side-chain-type strategy contributed to enhancing the ICMs stability in strong oxidizing environment,meanwhile,more interesting backbones would be woken with this design engaging in stable ICMs for VFBs.展开更多
Sodium(Na)metal is a competitive anode for next-generation energy storage applications in view of its low cost and high-energy density.However,the uncontrolled side reactions,unstable solid electrolyte interphase(SEI)...Sodium(Na)metal is a competitive anode for next-generation energy storage applications in view of its low cost and high-energy density.However,the uncontrolled side reactions,unstable solid electrolyte interphase(SEI)and dendrite growth at the electrode/electrolyte interfaces impede the practical application of Na metal as anode.Herein,a heterogeneous Na-based alloys interfacial protective layer is constructed in situ on the surface of Na foil by self-diffusion of liquid metal at room temperature,named“HAIP Na.”The interfacial Na-based alloys layer with good electrolyte wettability and strong sodiophilicity,and assisted in the construction of NaF-rich SEI.By means of direct visualization and theoretical simulation,we verify that the interfacial Na-based alloys layer enabling uniform Na^(+)flux deposition and suppressing the dendrite growth.As a result,in the carbonate-based electrolyte,the HAIP Na||HAIP Na symmetric cells exhibit a remarkably enhanced cycling life for more than 650 h with a capacity of 1mAh cm^(−2)at a current density of 1mAcm^(−2).When the HAIP Na anode is paired with sulfurized polyacrylonitrile(SPAN)cathode,the SPAN||HAIP Na full cells demonstrate excellent rate performance and cycling stability.展开更多
Sodium-ion batteries (NIBs) show great prospect on the energy storage applications benefiting from thei low cost and the abundant Na resources despite the expected lower energy density compared wit lithium-ion batte...Sodium-ion batteries (NIBs) show great prospect on the energy storage applications benefiting from thei low cost and the abundant Na resources despite the expected lower energy density compared wit lithium-ion batteries (LIBs). To further enhance the competitive advantage, especially in energy densit3 developing the high-capacity carbon anode materials can be one of the effective approaches to realiz this goal. Herein, we report a novel carbon anode made from charcoal with a high capacity of ~400 Ah g i, wherein about 85% (〉330 mAh g^-1) of its total capacity is derived from the long plateau regio below ~0.1 V. which differs fiom those of typical hard carbon materials (~300 mAh g^-l) in NIBs but i similar to the graphite anode in LIBs. When coupled with air-stable Nao.gCuo.22Feo.3oMno.4802 oxid cathode, a high-energy density of ~240 Wh kg^-1 is achieved with good rate capability and cyclin stability. The discovery of this promising carbon anode is expected to further improve the energy densit of NIBs towards large-scale electrical energy storage.展开更多
Na-ion batteries are considered a promising alternative to Li-ion batteries for large-scale energy storage systems due to their low cost and the natural abundance of Na resource. Great effort is making worldwide to de...Na-ion batteries are considered a promising alternative to Li-ion batteries for large-scale energy storage systems due to their low cost and the natural abundance of Na resource. Great effort is making worldwide to develop high-performance electrode materials for Na-ion batteries,which is critical for Na-ion batteries. This review provides a comprehensive overview of anode materials for Na-ion batteries based on Na-storage mechanism: insertion-based materials, alloy-based materials, conversion-based materials and organic composites. And we summarize the Nastorage mechanism of those anode materials and discuss their failure mechanism. Furthermore, the problems and challenges associated with those anodes are pointed out,and feasible strategies are proposed for designing highperformance anode materials. According to the current state of research, the search for suitable anode materials for Na-ion batteries is still challenging although substantial progress has been achieved. Nevertheless, we believe that high-performance Na-ion batteries would be promising for practical applications in large-scale energy storage systems in the near future.展开更多
The low-cost and high-safety rechargeable zincion batteries(ZIBs)show promising applications for largescale energy storage.However,the(de)intercalation of divalent zinc ions with high charge density restricts cathode ...The low-cost and high-safety rechargeable zincion batteries(ZIBs)show promising applications for largescale energy storage.However,the(de)intercalation of divalent zinc ions with high charge density restricts cathode materials’choice.Na_(3)V_(2)(PO_(4))_(3)(NVP)is one of the sodium(Na)super-ionic conductor materials that shows feasible utilization in aqueous ZIBs but universally has poor cycle life,commonly limited to 200 cycles or less.In this study,we investigate the capacity degradation mechanism of NVP systematically and then propose a novel organic dual-salt electrolyte to realize excellent cycling stability.We find a spontaneous dissolution of NVP when immersed in the static aqueous electrolyte,and there is an irreversible phase change during the first discharge process,leading to a fast capacity fading in aqueous electrolytes.The dissolution problem can be effectively suppressed by non-aqueous Zn^(2+)-containing electrolytes.However,the sluggish reaction of Zn^(2+)intercalation into NVP causes poor reversibility.We develop a non-aqueous Na/Zn hybrid system by adding Na^(+)ions as charge carriers to address this issue.Highly reversible co-insertion of Na/Zn ions into the NVP enables a high capacity of 84 mA h^(−1)and an outstanding lifetime of 600 cycles at 500 mA g^(−1)without capacity loss.This work provides valuable views on the NVP’s failure mechanisms that will be helpful for ZIB development.展开更多
基金financialy supported by the National Natural Science Foundation of China(nos.22078069,22178069,51903254)
文摘Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.
基金financial support from the National Natural Science Foundation of China (No.21501171,51403209,21406221,51177156/E0712)
文摘Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high over-all abundance of precursors, their even geographical distribution, and low cost. Na3V2(PO4)3 (NVP), atypical sodium super ion conductor (NASlCON)-based electrode material, exhibits pronounced structuralstability, exceptionally high ion conductivity, rendering it a most promising electrode for sodium storage.However. the comparatively low electronic conductivity makes the theoretical capacity of NVP cannot befully accessible even at comparatively low rates, presenting a major drawback for further practical ap-plications, especially when high rate capability is especially important. Thus, many endeavors have beenconformed to increase the surface and intrinsic electrical conductivity of NVP by coating the active mate-rials with a conductive carbon layer, downsizing the NVP particles, combining the NVP particle with vari-ous carbon materials and ion doping strategy. In this review, to get a better understanding on the sodiumstorage in NVP, we firstly present 4 distinct crystal structures in the temperature range of-30℃-225℃ namely α-NVP, β-NVP, β′-NVP and γ-NVP. Moreover, we give an overview of recent approaches to en-hance the surface electrical conductivity and intrinsic electrical conductivity of NVP. Finally, some poten-tial applications of NVP such as in all-climate environment and PHEV, EV fields have been prospected.
基金Financial support from National Natural Science Foundation of China(Nos.51702056 and 51772135)the Ministry of Education of China(6141A02022516)China Postdoctoral Science Foundation(2017M622902 and 2019T120790).
文摘Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.
文摘As the service life of the electric bicycle' s storage battery is shortened due to the long-term floating charge, an automatic power- off circuit for the storage battery of electric bicycle is designed, and also the composition and design of the circuit are specifically expounded. After a test, the circuit can achieve a desired effect. Therefore, it can prolong the service life of the electric bicycle' s storage battery and save electric energy in the actual applications.
基金supported by the National Natural Science Foundation of China (Grants Nos. 51772082,51574117,and 51804106)the Research Projects of Degree and Graduate Education Teaching Reformation in Hunan Province (JG2018B031)+1 种基金the Natural Science Foundation of Hunan Province (2019JJ30002,2019JJ50061)project funded by the China Postdoctoral Science Foundation (2017M610495, 2018T110822)
文摘Sodium-ion batteries(SIBs)are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance.However,there are still challenges in developing desirable anode materials that can accommodate rapid and stable insertion/extraction of Na+and can exhibit excellent electrochemical performance.Herein,the self-assembled hairball-like VS4 as anodes of SIBs exhibits high discharge capacity(660 and 589 mAh g−1 at 1 and 3 A g−1,respectively)and excellent rate property(about 100%retention at 10 and 20 A g−1 after 1000 cycles)at room temperature.Moreover,the VS4 can also exhibit 591 mAh g−1 at 1 A g−1 after 600 cycles at 0°C.An unlike traditional mechanism of VS4 for Na+storage was proposed according to the dates of ex situ characterization,cyclic voltammetry,and electrochemical kinetic analysis.The capacities of the final stabilization stage are provided by the reactions of reversible transformation between Na2S and S,which were considered the reaction mechanisms of Na–S batteries.This work can provide a basis for the synthesis and application of sulfur-rich compounds in fields of batteries,semiconductor devices,and catalysts.
基金the COST Association and COST Action CA15107 "MultiFunctional Nano-Carbon Composite Materials Network (MultiComp)" for the financial supportRoyal Society via the Newton Fund for an Advanced Newton Fellowship at Queen Mary University of London which triggered this collaboration
文摘Here,we report the synthesis of hard carbon materials(RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries.The studies show that the electrochemical properties of RHs are affected by the treatment temperatures,which determine the materials morphology,in particular,their degree of graphitization and extent of continuous channels(nanovoids).The latter are accessible to sodium ions and significantly contribute to charge storage capacity of the produced anodes.The RHs obtained at 1600 °C deliver the highest reversible capacity of276 mAh g^(-1) mainly due to insertion of sodium ions into the nanovoids.This work deepens the basic understanding of the influence of the carbonization temperature on the sodium storage mechanism.
文摘Flexible energy storage devices are essential for emerging flexible electronics. The existing state-of-the-art Li-ion batteries are slowly reaching their limitation in terms of cost and energy density. Hence, flexible Na-ion batteries (SIBs) with abundanee Na resources and Li-S batteries with high energy density become the alternative for the Li-ion batteries in future. This review summarizes the recent advances in the development of flexible electrode materials for SIBs with metallic matrix and carb on aceous matrix such as carb on nano-tubes, carbon nano-fiber, graphene, carbon cloth, carbon fiber cloth, and cotton textiles. Then, the potential prototype flexible full SIBs are discussed. Further, the recent progress in the development of flexible electrode materials for Li-S batteries based on carb on nano-fiber, carb on nano-tubes, graphene, and cotton textiles is reviewed. Moreover, the design strategies of suitable interlayer, separator, electrolyte, and electrodes to prevent the dissolution and shuttle effect of polysulfides in flexible Li-S batteries are provided. Finally some prospective investigation trends towards future research of flexible SIBs and Li-S batteries are also proposed and discussed. The scientific and engineering knowledge gained on flexible SIBs and Li-S batteries provides conceivable development for practical application in near future.
基金the China Scholarship Council(CSC,No.201906200023)the MatKat Foundation.Aikai Yang,whose CSC grant application is affiliated with Nankai University(Tianjin,China)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)at Nankai University.Partial financial support from the German Federal Ministry of Education and Research(BMBF)within the project“HeNa”(support code 13XP0390B)is also gratefully acknowledged.
文摘The development of reliable and affordable all-solid-state sodium metal batteries(ASS-SMBs)requires suitable solid-state electrolytes with cost-efficient processing and stabilized electrode/electrolyte interfaces.Here,an integrated porous/dense/porous Na_(5)YSi_(4)O_(12)(NYS)trilayered scaffold is designed and fabricated by tape casting using aqueous slurries.In this template-based NYS scaffold,the dense layer in the middle serves as a separator and the porous layers on both sides accommodate the active materials with their volume changes during the charge/discharge processes,increasing the contact area and thus enhancing the utilization rate and homogenizing the current distribution.The Na/NYS/Na symmetric cells with the Pb-coated NYS scaffold exhibit significantly reduced interfacial impedance and superior critical current density of up to 3.0 mA cm^(-2)against Na metal owing to enhanced wettability.Furthermore,the assembled Na/NYS/S full cells operated without external pressure at room temperature showed a high initial discharge capacity of 970 mAh g^(-1)and good cycling stability with a capacity of 600 mAh g^(-1)after 150 cycles(based on the mass of sulfur).This approach paves the way for the realization of economical and practical ASS-SMBs from the perspective of ceramic manufacturing.
文摘Energy storage system plays an important role in smart grid. Analyzing from the view of existing status and problems facing Shanghai grid, the article puts forward the necessity of applying energy storage technology in a large urban grid and the achievements in the key technologies in Shanghai grid. As a comprehensive demonstration base for the pilot project of smart grid in Expo 2010 by the State Grid, the Shanghai Caoxi Energy Conversion Comprehensive Exhibit Station is also introduced in detail.
文摘Battery energy storage systems(BESS)are instrumental in the transition to a low carbon electrical network with enhanced flexibility,however,the set objective can be accomplished only through suitable scheduling of their operation.This paper develops a dynamic optimal power flow(DOPF)-based scheduling framework to optimize the day(s)-ahead operation of a grid-scale BESS aiming to mitigate the predicted limits on the renewable energy generation as well as smooth out the network demand to be supplied by conventional generators.In DOPF,all the generating units,including the ones that model the exports and imports of the BESS,across the entire network and the complete time horizon are integrated on to a single network.Subsequently,an AC-OPF is applied to dispatch their power outputs to minimize the total generation cost,while satisfying the power balance equations,and handling the unit and network constraints at each time step coupled with intertemporal constraints associated with the state of charge(SOC).Furthermore,the DOPF developed here entails the frequently applied constant current-constant voltage charging profile,which is represented in the SOC domain.Considering the practical application of a 1 MW BESS on a particular 33 kV network,the scheduling framework is designed to meet the pragmatic requirements of the optimum utilization of the available energy capacity of BESS in each cycle,while completing up to one cycle per day.
基金the financial support of the National Natural Science Foundation of China(Nos.22075276,U19A2016,U22B6012)CAS Strategic Leading Science&Technology Program(A)(No.XDA21070000)+2 种基金Dalian High Level Talent Innovation Support Program(No.2020RD05)the Development of Scientic and Technological Project of the Jilin Province(No.20210101126JC)International Partnership Program of Chinese Academy of Sciences(No.121421KYSB20210028)。
文摘Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes(ICMs)that provide high ion selectivity,proton conductivity,and stability under rigorous condition.Herein,a‘side-chain-type’strategy has been employed to fabricate highly stable phenolphthalein-based cardo poly(arylene ether ketone)s(PAEKs)membrane with low area resistance(0.058Ωcm^(2)),in which flexible alkyl spacers effectively alleviated inductive withdrawing effect from terminal ion exchange groups thus enabling a stable backbone.The assembled VFBs based on PAEKs bearing pendent alkyl chain terminated with quaternary ammonium(Q-PPhEK)demonstrated an energy efficiency above 80%over 700 cycles at 160 mA/cm^(2).Such a remarkable results revealed that the side-chain-type strategy contributed to enhancing the ICMs stability in strong oxidizing environment,meanwhile,more interesting backbones would be woken with this design engaging in stable ICMs for VFBs.
基金National Natural Science Foundation of China,Grant/Award Numbers:51972198,62133007Shenzhen Fundamental Research Program,Grant/Award Number:JCYJ20220530141017039+2 种基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2020JQ19Taishan Scholars Program of Shandong Province,Grant/Award Numbers:tsqn201812002,ts20190908Project of the Taishan Scholar,Grant/Award Number:ts201511004。
文摘Sodium(Na)metal is a competitive anode for next-generation energy storage applications in view of its low cost and high-energy density.However,the uncontrolled side reactions,unstable solid electrolyte interphase(SEI)and dendrite growth at the electrode/electrolyte interfaces impede the practical application of Na metal as anode.Herein,a heterogeneous Na-based alloys interfacial protective layer is constructed in situ on the surface of Na foil by self-diffusion of liquid metal at room temperature,named“HAIP Na.”The interfacial Na-based alloys layer with good electrolyte wettability and strong sodiophilicity,and assisted in the construction of NaF-rich SEI.By means of direct visualization and theoretical simulation,we verify that the interfacial Na-based alloys layer enabling uniform Na^(+)flux deposition and suppressing the dendrite growth.As a result,in the carbonate-based electrolyte,the HAIP Na||HAIP Na symmetric cells exhibit a remarkably enhanced cycling life for more than 650 h with a capacity of 1mAh cm^(−2)at a current density of 1mAcm^(−2).When the HAIP Na anode is paired with sulfurized polyacrylonitrile(SPAN)cathode,the SPAN||HAIP Na full cells demonstrate excellent rate performance and cycling stability.
基金supported by the National Key Technologies R&D Program(2016YFB0901500)National Natural Science Foundation of China(51725206,51421002,51232005,and 51372131)
文摘Sodium-ion batteries (NIBs) show great prospect on the energy storage applications benefiting from thei low cost and the abundant Na resources despite the expected lower energy density compared wit lithium-ion batteries (LIBs). To further enhance the competitive advantage, especially in energy densit3 developing the high-capacity carbon anode materials can be one of the effective approaches to realiz this goal. Herein, we report a novel carbon anode made from charcoal with a high capacity of ~400 Ah g i, wherein about 85% (〉330 mAh g^-1) of its total capacity is derived from the long plateau regio below ~0.1 V. which differs fiom those of typical hard carbon materials (~300 mAh g^-l) in NIBs but i similar to the graphite anode in LIBs. When coupled with air-stable Nao.gCuo.22Feo.3oMno.4802 oxid cathode, a high-energy density of ~240 Wh kg^-1 is achieved with good rate capability and cyclin stability. The discovery of this promising carbon anode is expected to further improve the energy densit of NIBs towards large-scale electrical energy storage.
基金financially supported by the Fund for Innovative Research Groups of the National Natural Science Foundation of China (No.NSFC51621001)the National Natural Science Foundation of China (No.51671089)+1 种基金Guangdong Natural Science Funds for Distinguished Young Scholar (No.2017B030306004)the Fundamental Research Funds for the Central Universities (No.2017ZD011)
文摘Na-ion batteries are considered a promising alternative to Li-ion batteries for large-scale energy storage systems due to their low cost and the natural abundance of Na resource. Great effort is making worldwide to develop high-performance electrode materials for Na-ion batteries,which is critical for Na-ion batteries. This review provides a comprehensive overview of anode materials for Na-ion batteries based on Na-storage mechanism: insertion-based materials, alloy-based materials, conversion-based materials and organic composites. And we summarize the Nastorage mechanism of those anode materials and discuss their failure mechanism. Furthermore, the problems and challenges associated with those anodes are pointed out,and feasible strategies are proposed for designing highperformance anode materials. According to the current state of research, the search for suitable anode materials for Na-ion batteries is still challenging although substantial progress has been achieved. Nevertheless, we believe that high-performance Na-ion batteries would be promising for practical applications in large-scale energy storage systems in the near future.
基金This work was supported by the National Natural Science Foundation of China(91963210,U1801255,and 51872340)the Fundamental Research Funds for the Central Universities,China(18lgpy06).
文摘The low-cost and high-safety rechargeable zincion batteries(ZIBs)show promising applications for largescale energy storage.However,the(de)intercalation of divalent zinc ions with high charge density restricts cathode materials’choice.Na_(3)V_(2)(PO_(4))_(3)(NVP)is one of the sodium(Na)super-ionic conductor materials that shows feasible utilization in aqueous ZIBs but universally has poor cycle life,commonly limited to 200 cycles or less.In this study,we investigate the capacity degradation mechanism of NVP systematically and then propose a novel organic dual-salt electrolyte to realize excellent cycling stability.We find a spontaneous dissolution of NVP when immersed in the static aqueous electrolyte,and there is an irreversible phase change during the first discharge process,leading to a fast capacity fading in aqueous electrolytes.The dissolution problem can be effectively suppressed by non-aqueous Zn^(2+)-containing electrolytes.However,the sluggish reaction of Zn^(2+)intercalation into NVP causes poor reversibility.We develop a non-aqueous Na/Zn hybrid system by adding Na^(+)ions as charge carriers to address this issue.Highly reversible co-insertion of Na/Zn ions into the NVP enables a high capacity of 84 mA h^(−1)and an outstanding lifetime of 600 cycles at 500 mA g^(−1)without capacity loss.This work provides valuable views on the NVP’s failure mechanisms that will be helpful for ZIB development.