Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The struc...Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The structure of a large directed hierarchical network is often strongly influenced by reverse edges from lower-to higher-level nodes,such as lagging birds’howl in a flock or the opinions of lowerlevel individuals feeding back to higher-level ones in a social group.This study reveals that,for most large-scale real hierarchical networks,the majority of the reverse edges do not affect the synchronization process of the entire network;the synchronization process is influenced only by a small part of these reverse edges along specific paths.More surprisingly,a single effective reverse edge can slow down the synchronization of a huge hierarchical network by over 60%.The effect of such edges depends not on the network size but only on the average in-degree of the involved subnetwork.The overwhelming majority of active reverse edges turn out to have some kind of“bunching”effect on the information flows of hierarchical networks,which slows down synchronization processes.This finding refines the current understanding of the role of reverse edges in many natural,social,and engineering hierarchical networks,which might be beneficial for precisely tuning the synchronization rhythms of these networks.Our study also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it and provides some guidance for protecting a network by screening out the specific small proportion of vulnerable nodes.展开更多
The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated...The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated texts by using the web search engine correctly, inquire about the correct translation methods of the rare professional terms, apply the fixed sentence patterns, and check the correctness of the translation, so as to improve the translation speed and quality.展开更多
The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving sy...The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis.Semantic segmentation is also a challenging technology for image understanding and scene parsing.We focused on the challenging task of real-time semantic segmentation in this paper.In this paper,we proposed a novel fast architecture for real-time semantic segmentation named DuFNet.Starting from the existing work of Bilateral Segmentation Network(BiSeNet),DuFNet proposes a novel Semantic Information Flow(SIF)structure for context information and a novel Fringe Information Flow(FIF)structure for spatial information.We also proposed two kinds of SIF with cascaded and paralleled structures,respectively.The SIF encodes the input stage by stage in the ResNet18 backbone and provides context information for the feature fusionmodule.Features from previous stages usually contain rich low-level details but high-level semantics for later stages.Themultiple convolutions embed in Parallel SIF aggregate the corresponding features among different stages and generate a powerful global context representation with less computational cost.The FIF consists of a pooling layer and an upsampling operator followed by projection convolution layer.The concise component provides more spatial details for the network.Compared with BiSeNet,our work achieved faster speed and comparable performance with 72.34%mIoU accuracy and 78 FPS on Cityscapes Dataset based on the ResNet18 backbone.展开更多
Based on Bayesian network (BN) and information flow (IF),a new machine learning-based model named IFBN is put forward to interpolate missing time series of multiple ocean variables. An improved BN structural learning ...Based on Bayesian network (BN) and information flow (IF),a new machine learning-based model named IFBN is put forward to interpolate missing time series of multiple ocean variables. An improved BN structural learning algorithm with IF is designed to mine causal relationships among ocean variables to build network structure. Nondirectional inference mechanism of BN is applied to achieve the synchronous interpolation of multiple missing time series. With the IFBN,all ocean variables are placed in a causal network visually,making full use of information about related variables to fill missing data. More importantly,the synchronous interpolation of multiple variables can avoid model retraining when interpolative objects change. Interpolation experiments show that IFBN has even better interpolation accuracy,effectiveness and stability than existing methods.展开更多
Microblog is a new Internet featured product, which has seen a rapid development in recent years. Researchers from different countries are making various technical analyses on microblogging applications. In this study...Microblog is a new Internet featured product, which has seen a rapid development in recent years. Researchers from different countries are making various technical analyses on microblogging applications. In this study, through using the natural language processing(NLP) and data mining, we analyzed the information content transmitted via a microblog, users' social networks and their interactions, and carried out an empirical analysis on the dissemination process of one particular piece of information via Sina Weibo.Based on the result of these analyses, we attempt to develop a better understanding about the rule and mechanism of the informal information flow in microblogging.展开更多
Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, dif...Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.展开更多
We develop a series of mathematical models to describe flow of information in different periods of time and the relationship between flow of information and inherent value. We optimize the diffusion mechanism of infor...We develop a series of mathematical models to describe flow of information in different periods of time and the relationship between flow of information and inherent value. We optimize the diffusion mechanism of information based on model SEIR and improve the diffusion mechanism. In order to explore how inherent value of the information affects the flow of information, we simulate the model by using Matalab. We also use the data that the number of people is connected to Internet in Canada from the year 2009 to 2014 to analysis the model’s reliability. Then we use the model to predict the communication networks’ relationships and capacities around the year 2050. Last we do sensitivity analysis by making small changes in parameters of simulation experiment. The result of the experiment is helpful to model how public interest and opinion can be changed in complex network.展开更多
As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.D...As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.Due to the challenge of implicit interaction mechanism among traffic flow,airspace capacity and weather impact,the Weather-aware ATFP(Wa-ATFP)is still a nontrivial issue.In this paper,a novel Multi-faceted Spatio-Temporal Graph Convolutional Network(MSTGCN)is proposed to address the Wa-ATFP within the complex operations of MAS.Firstly,a spatio-temporal graph is constructed with three different nodes,including airport,route,and fix to describe the topology structure of MAS.Secondly,a weather-aware multi-faceted fusion module is proposed to integrate the feature of air traffic flow and the auxiliary features of capacity and weather,which can effectively address the complex impact of severe weather,e.g.,thunderstorms.Thirdly,to capture the latent connections of nodes,an adaptive graph connection constructor is designed.The experimental results with the real-world operational dataset in Guangdong-Hong Kong-Macao Greater Bay Area,China,validate that the proposed approach outperforms the state-of-the-art machine-learning and deep-learning based baseline approaches in performance.展开更多
Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless fr...Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless framework for combining the measured data with the deep neural network,making the neural network capable of executing certain physical constraints.Unlike the data-driven model to learn the end-to-end mapping between the sensor data and high-dimensional flow field,PINN need no prior high-dimensional field as the training dataset and can construct the mapping from sensor data to high dimensional flow field directly.However,the extrapolation of the flow field in the temporal direction is limited due to the lack of training data.Therefore,we apply the long short-term memory(LSTM)network and physics-informed neural network(PINN)to predict the flow field and hydrodynamic force in the future temporal domain with limited data measured in the spatial domain.The physical constraints(conservation laws of fluid flow,e.g.,Navier-Stokes equations)are embedded into the loss function to enforce the trained neural network to capture some latent physical relation between the output fluid parameters and input tempo-spatial parameters.The sparsely measured points in this work are obtained from computational fluid dynamics(CFD)solver based on the local radial basis function(RBF)method.Different numbers of spatial measured points(4–35)downstream the cylinder are trained with/without the prior knowledge of Reynolds number to validate the availability and accuracy of the proposed approach.More practical applications of flow field prediction can compute the drag and lift force along with the cylinder,while different geometry shapes are taken into account.By comparing the flow field reconstruction and force prediction with CFD results,the proposed approach produces a comparable level of accuracy while significantly fewer data in the spatial domain is needed.The numerical results demonstrate that the proposed approach with a specific deep neural network configuration is of great potential for emerging cases where the measured data are often limited.展开更多
该文基于信息系统物理化的设想提出电力信息物理系统(cyber-physical power system,CPPS)中的信息流建模和计算分析方法。采用连续时间函数来刻画信息流的特征,并定义信息网络运行参数为流量累积函数、信息流速和时延。首先,基于遍历法...该文基于信息系统物理化的设想提出电力信息物理系统(cyber-physical power system,CPPS)中的信息流建模和计算分析方法。采用连续时间函数来刻画信息流的特征,并定义信息网络运行参数为流量累积函数、信息流速和时延。首先,基于遍历法搜索出信息流路径,建立信息流速矩阵的范式;然后利用改进的网络演算(network calculus,NC)特性赋值流速矩阵的元素;进一步采用流量累积函数表征信源数据发送规律,从而显式求解时延上界。最后将提出的信息流建模方法应用于智能变电站自动化系统的时延计算,通过与OPNET的仿真结果相比较,验证所提出模型的有效性,而且该方法可以提供定量分析指标以优化变电站组网方案设计中的信息流分布。展开更多
Considering both the high complexity of urban traffic flow systems and the bounded rationality of travelers,providing traffic information to all travelers is an effective method to induce each individual to make a mor...Considering both the high complexity of urban traffic flow systems and the bounded rationality of travelers,providing traffic information to all travelers is an effective method to induce each individual to make a more rational route-choice decision.Within Advanced Traveler Information System(ATIS)working environment,temporal and spatial evolution processes of traffic flow in urban road networks are closely related to strategies of providing traffic information and contents of information.In view of the day-to-day route-choice situations,this study constructs original updating models of the cognitive travel time of travelers under four conditions,including not providing any route travel time,only providing the most rapid route travel time,only providing the most congested route travel time,and providing all the routes travel times.The disaggregate route-choice approach is adopted for simulation to reveal the relationship between the evolution process of network traffic flow and the strategy of providing traffic information.The simulation shows that providing traffic information to all travelers cannot improve the operational efficiency of road networks.It is noteworthy that an inappropriate information feedback strategy would lead to intense variation in various routes traffic flow.Compared with incomplete information feedback strategies,it is inefficient and superfluous to provide complete traffic information to all travelers.展开更多
物理信息深度学习(physics-informed deep learning, PIDL)是一种将深度学习与物理学先验知识相结合的新兴范式,该范式在智能交通领域,尤其在交通状态估计应用中,展现出了巨大潜力。为进一步优化物理信息深度学习模型在交通状态估计问...物理信息深度学习(physics-informed deep learning, PIDL)是一种将深度学习与物理学先验知识相结合的新兴范式,该范式在智能交通领域,尤其在交通状态估计应用中,展现出了巨大潜力。为进一步优化物理信息深度学习模型在交通状态估计问题上的准确度与收敛速度,构建了一个结合Aw-Rascle宏观交通流模型的物理信息自适应深度学习模型(physics-informed adaptive deep learning with Aw-Rascle, PIAdapDL-AR),依据有限与局部的交通检测数据,实时准确估计全局交通流状态。主要的改进包括两部分,一是在PIDL框架中的物理部分引入高阶Aw-Rascle交通流模型作为物理约束条件,引导并规范神经网络的训练过程;二是在神经网络部分融合自适应激活函数,替代固定的非线性激活函数,以动态优化神经网络性能。基于NGSIM数据集生成模拟的固定检测器数据和移动检测器数据,进行实验以验证模型有效性。实验结果表明:在不同覆盖率的固定检测数据场景下,PIAdapDL-AR的相对误差相比于基线模型PIDL-LWR降低了34.38%~45.24%;在不同渗透率的移动检测数据场景下,PIAdapDL-AR的相对误差相比于PIDL-LWR降低了18.33%~34.95%;融合自适应激活函数的PIAdapDL-AR的收敛速度优于配置固定激活函数的PIDL-AR,且收敛速度和估计精度均随着自适应激活函数中比例因子的增大而提升。展开更多
基金supported in part by the National Natural Science Foundation of China(62225306,U2141235,52188102,and 62003145)the National Key Research and Development Program of China(2022ZD0119601)+1 种基金Guangdong Basic and Applied Research Foundation(2022B1515120069)the Science and Technology Project of State Grid Corporation of China(5100-202199557A-0-5-ZN).
文摘Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The structure of a large directed hierarchical network is often strongly influenced by reverse edges from lower-to higher-level nodes,such as lagging birds’howl in a flock or the opinions of lowerlevel individuals feeding back to higher-level ones in a social group.This study reveals that,for most large-scale real hierarchical networks,the majority of the reverse edges do not affect the synchronization process of the entire network;the synchronization process is influenced only by a small part of these reverse edges along specific paths.More surprisingly,a single effective reverse edge can slow down the synchronization of a huge hierarchical network by over 60%.The effect of such edges depends not on the network size but only on the average in-degree of the involved subnetwork.The overwhelming majority of active reverse edges turn out to have some kind of“bunching”effect on the information flows of hierarchical networks,which slows down synchronization processes.This finding refines the current understanding of the role of reverse edges in many natural,social,and engineering hierarchical networks,which might be beneficial for precisely tuning the synchronization rhythms of these networks.Our study also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it and provides some guidance for protecting a network by screening out the specific small proportion of vulnerable nodes.
文摘The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated texts by using the web search engine correctly, inquire about the correct translation methods of the rare professional terms, apply the fixed sentence patterns, and check the correctness of the translation, so as to improve the translation speed and quality.
基金supported in part by the National Key RD Program of China (2021YFF0602104-2,2020YFB1804604)in part by the 2020 Industrial Internet Innovation and Development Project from Ministry of Industry and Information Technology of Chinain part by the Fundamental Research Fund for the Central Universities (30918012204,30920041112).
文摘The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis.Semantic segmentation is also a challenging technology for image understanding and scene parsing.We focused on the challenging task of real-time semantic segmentation in this paper.In this paper,we proposed a novel fast architecture for real-time semantic segmentation named DuFNet.Starting from the existing work of Bilateral Segmentation Network(BiSeNet),DuFNet proposes a novel Semantic Information Flow(SIF)structure for context information and a novel Fringe Information Flow(FIF)structure for spatial information.We also proposed two kinds of SIF with cascaded and paralleled structures,respectively.The SIF encodes the input stage by stage in the ResNet18 backbone and provides context information for the feature fusionmodule.Features from previous stages usually contain rich low-level details but high-level semantics for later stages.Themultiple convolutions embed in Parallel SIF aggregate the corresponding features among different stages and generate a powerful global context representation with less computational cost.The FIF consists of a pooling layer and an upsampling operator followed by projection convolution layer.The concise component provides more spatial details for the network.Compared with BiSeNet,our work achieved faster speed and comparable performance with 72.34%mIoU accuracy and 78 FPS on Cityscapes Dataset based on the ResNet18 backbone.
基金The National Natural Science Foundation of China under contract Nos 41875061 and 41976188the“Double First-Class”Research Program of National University of Defense Technology under contract No.xslw05.
文摘Based on Bayesian network (BN) and information flow (IF),a new machine learning-based model named IFBN is put forward to interpolate missing time series of multiple ocean variables. An improved BN structural learning algorithm with IF is designed to mine causal relationships among ocean variables to build network structure. Nondirectional inference mechanism of BN is applied to achieve the synchronous interpolation of multiple missing time series. With the IFBN,all ocean variables are placed in a causal network visually,making full use of information about related variables to fill missing data. More importantly,the synchronous interpolation of multiple variables can avoid model retraining when interpolative objects change. Interpolation experiments show that IFBN has even better interpolation accuracy,effectiveness and stability than existing methods.
文摘Microblog is a new Internet featured product, which has seen a rapid development in recent years. Researchers from different countries are making various technical analyses on microblogging applications. In this study, through using the natural language processing(NLP) and data mining, we analyzed the information content transmitted via a microblog, users' social networks and their interactions, and carried out an empirical analysis on the dissemination process of one particular piece of information via Sina Weibo.Based on the result of these analyses, we attempt to develop a better understanding about the rule and mechanism of the informal information flow in microblogging.
基金supported in part by National Natural Science Foundation of China(61502368,61303033,U1135002 and U1405255)the National High Technology Research and Development Program(863 Program)of China(No.2015AA017203)+1 种基金the Fundamental Research Funds for the Central Universities(XJS14072,JB150308)the Aviation Science Foundation of China(No.2013ZC31003,20141931001)
文摘Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.
文摘We develop a series of mathematical models to describe flow of information in different periods of time and the relationship between flow of information and inherent value. We optimize the diffusion mechanism of information based on model SEIR and improve the diffusion mechanism. In order to explore how inherent value of the information affects the flow of information, we simulate the model by using Matalab. We also use the data that the number of people is connected to Internet in Canada from the year 2009 to 2014 to analysis the model’s reliability. Then we use the model to predict the communication networks’ relationships and capacities around the year 2050. Last we do sensitivity analysis by making small changes in parameters of simulation experiment. The result of the experiment is helpful to model how public interest and opinion can be changed in complex network.
基金supported by the National Key Research and Development Program of China(No.2022YFB2602402)the National Natural Science Foundation of China(Nos.U2033215 and U2133210).
文摘As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.Due to the challenge of implicit interaction mechanism among traffic flow,airspace capacity and weather impact,the Weather-aware ATFP(Wa-ATFP)is still a nontrivial issue.In this paper,a novel Multi-faceted Spatio-Temporal Graph Convolutional Network(MSTGCN)is proposed to address the Wa-ATFP within the complex operations of MAS.Firstly,a spatio-temporal graph is constructed with three different nodes,including airport,route,and fix to describe the topology structure of MAS.Secondly,a weather-aware multi-faceted fusion module is proposed to integrate the feature of air traffic flow and the auxiliary features of capacity and weather,which can effectively address the complex impact of severe weather,e.g.,thunderstorms.Thirdly,to capture the latent connections of nodes,an adaptive graph connection constructor is designed.The experimental results with the real-world operational dataset in Guangdong-Hong Kong-Macao Greater Bay Area,China,validate that the proposed approach outperforms the state-of-the-art machine-learning and deep-learning based baseline approaches in performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52206053,52130603)。
文摘Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless framework for combining the measured data with the deep neural network,making the neural network capable of executing certain physical constraints.Unlike the data-driven model to learn the end-to-end mapping between the sensor data and high-dimensional flow field,PINN need no prior high-dimensional field as the training dataset and can construct the mapping from sensor data to high dimensional flow field directly.However,the extrapolation of the flow field in the temporal direction is limited due to the lack of training data.Therefore,we apply the long short-term memory(LSTM)network and physics-informed neural network(PINN)to predict the flow field and hydrodynamic force in the future temporal domain with limited data measured in the spatial domain.The physical constraints(conservation laws of fluid flow,e.g.,Navier-Stokes equations)are embedded into the loss function to enforce the trained neural network to capture some latent physical relation between the output fluid parameters and input tempo-spatial parameters.The sparsely measured points in this work are obtained from computational fluid dynamics(CFD)solver based on the local radial basis function(RBF)method.Different numbers of spatial measured points(4–35)downstream the cylinder are trained with/without the prior knowledge of Reynolds number to validate the availability and accuracy of the proposed approach.More practical applications of flow field prediction can compute the drag and lift force along with the cylinder,while different geometry shapes are taken into account.By comparing the flow field reconstruction and force prediction with CFD results,the proposed approach produces a comparable level of accuracy while significantly fewer data in the spatial domain is needed.The numerical results demonstrate that the proposed approach with a specific deep neural network configuration is of great potential for emerging cases where the measured data are often limited.
文摘该文基于信息系统物理化的设想提出电力信息物理系统(cyber-physical power system,CPPS)中的信息流建模和计算分析方法。采用连续时间函数来刻画信息流的特征,并定义信息网络运行参数为流量累积函数、信息流速和时延。首先,基于遍历法搜索出信息流路径,建立信息流速矩阵的范式;然后利用改进的网络演算(network calculus,NC)特性赋值流速矩阵的元素;进一步采用流量累积函数表征信源数据发送规律,从而显式求解时延上界。最后将提出的信息流建模方法应用于智能变电站自动化系统的时延计算,通过与OPNET的仿真结果相比较,验证所提出模型的有效性,而且该方法可以提供定量分析指标以优化变电站组网方案设计中的信息流分布。
基金the National Social Science Foundation of China(Grant No.14XGL011)the Humanity and Social Science Youth Foundation of Ministry of Education in China(Grant No.12YJC630200)+1 种基金the Natural Science Foundation of Gansu Province in China(Grant No.145RJZA190)the Social Science Planning Project of Gansu Province in China(Grant No.13YD066).
文摘Considering both the high complexity of urban traffic flow systems and the bounded rationality of travelers,providing traffic information to all travelers is an effective method to induce each individual to make a more rational route-choice decision.Within Advanced Traveler Information System(ATIS)working environment,temporal and spatial evolution processes of traffic flow in urban road networks are closely related to strategies of providing traffic information and contents of information.In view of the day-to-day route-choice situations,this study constructs original updating models of the cognitive travel time of travelers under four conditions,including not providing any route travel time,only providing the most rapid route travel time,only providing the most congested route travel time,and providing all the routes travel times.The disaggregate route-choice approach is adopted for simulation to reveal the relationship between the evolution process of network traffic flow and the strategy of providing traffic information.The simulation shows that providing traffic information to all travelers cannot improve the operational efficiency of road networks.It is noteworthy that an inappropriate information feedback strategy would lead to intense variation in various routes traffic flow.Compared with incomplete information feedback strategies,it is inefficient and superfluous to provide complete traffic information to all travelers.
文摘物理信息深度学习(physics-informed deep learning, PIDL)是一种将深度学习与物理学先验知识相结合的新兴范式,该范式在智能交通领域,尤其在交通状态估计应用中,展现出了巨大潜力。为进一步优化物理信息深度学习模型在交通状态估计问题上的准确度与收敛速度,构建了一个结合Aw-Rascle宏观交通流模型的物理信息自适应深度学习模型(physics-informed adaptive deep learning with Aw-Rascle, PIAdapDL-AR),依据有限与局部的交通检测数据,实时准确估计全局交通流状态。主要的改进包括两部分,一是在PIDL框架中的物理部分引入高阶Aw-Rascle交通流模型作为物理约束条件,引导并规范神经网络的训练过程;二是在神经网络部分融合自适应激活函数,替代固定的非线性激活函数,以动态优化神经网络性能。基于NGSIM数据集生成模拟的固定检测器数据和移动检测器数据,进行实验以验证模型有效性。实验结果表明:在不同覆盖率的固定检测数据场景下,PIAdapDL-AR的相对误差相比于基线模型PIDL-LWR降低了34.38%~45.24%;在不同渗透率的移动检测数据场景下,PIAdapDL-AR的相对误差相比于PIDL-LWR降低了18.33%~34.95%;融合自适应激活函数的PIAdapDL-AR的收敛速度优于配置固定激活函数的PIDL-AR,且收敛速度和估计精度均随着自适应激活函数中比例因子的增大而提升。