The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite r...The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps.展开更多
Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional p...Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.展开更多
In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic dat...In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin.展开更多
Production performance of the Wufeng-Longmaxi shales varies significantly among Fuling,Weirong,and Wulong fields in the Sichuan Basin.Total organic carbon(TOC)content,mineralogy,and organic matter(OM)pore characterist...Production performance of the Wufeng-Longmaxi shales varies significantly among Fuling,Weirong,and Wulong fields in the Sichuan Basin.Total organic carbon(TOC)content,mineralogy,and organic matter(OM)pore characteristics are investigated to identify key factors governing sweet spots.Siliceous shales with good preservation conditions in the Fuling Field exhibit large thickness,high TOC content and thin-section porosity(TSP),and well-developed OM macropores,thus high initial production and estimated ultimate recovery(EUR).Thin carbonate-containing siliceous shales with good preservation conditions in the Weirong Field feature medium-to-high TOC and well-developed OM macropores but low TSP,leading to high initial production but low EUR.Siliceous shales with poor preservation conditions in the Wulong Field are characterized by large thickness,high TOC,low TSP and poorly-developed OM macropores,causing low initial production and EUR.Both sedimentary and preservation conditions are intrinsic decisive factors of sweet spots,as they control the mineral composition,TOC,and OM macropore development.Deep-water shales in transgressive systems tracts(TSTs)exhibit better-developed OM macropores and greater TOC compared to highstand systems tracts(HSTs).OM macropores are most prevalent in siliceous shales,followed by carbonate-containing siliceous shales and then argillaceous shales.Furthermore,good preservation conditions are conducive to retain OM macropores with low pore aspect ratio(PAR).Comparison among the three fields shows that high-TOC silicious shales with good preservation conditions are the highest in TSP and EUR.Therefore,organic richness,lithofacies,and preservation conditions are the major factors which determine OM pore development,governing the sweet spots of the Wufeng-Longmaxi shales.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Based on analysis of outcrop,drilling,logging and seismic data,and geotectonic background,the lithofacies paleogeography and paleokarst geomorphology of the Middle Permian Maokou Formation in the northwestern Sichuan ...Based on analysis of outcrop,drilling,logging and seismic data,and geotectonic background,the lithofacies paleogeography and paleokarst geomorphology of the Middle Permian Maokou Formation in the northwestern Sichuan Basin were reconstructed,and the petroleum geological significance of the lithofacies paleogeography and paleokarst geomorphology were discussed.The Maokou Formation is divided into 3 long-term cycles,namely LSCl,LSC2 and LSC3,which correspond to the Member 1,Member 2 and Member 3 of the Maokou Formation,respectively.Controlled by the extensional structure caused by opening of the Mianlue Ocean in the north margin of the upper Yangtze blocks and basement faults produced by mantle plume uplifting,the area had tectonic differentiation in NWW and NE,and sedimentary basement took on episodic settlement from north to south,as a result,the sedimentary systems of Member 1 to Member 3 gradually evolved from carbonate platform to platform-slope-continental shelf.According to the residual thickness,paleokarst geomorphologic units such as karst highland,karst slope and karst depression at different stages were reconstructed.The karst geomorphological units were developed successively on the basis of sedimentary geomorphology.Sedimentary facies and paleokarst geomorphology are of great significance for oil and gas accumulation.The Maokou Formation in northwestern Sichuan has two kinds of most favorable reservoir zone combinations:high energy grain shoal and karst monadnock,platform margin slope and karst slope.Based on this understanding,the planar distribution of the two kinds of reservoir zones were predicted by overlapping the favorable reservoir facies belt with paleokarst geomorphology.The study results provide a new idea and reference for the exploration deployment of the Middle Permian Maokou Formation in the Sichuan Basin.展开更多
The characteristics,formation time,and origin of the sucrosic dolomite reservoirs in the Permian Qixia Formation of northwestern Sichuan Basin are analyzed.Core and outcrop description and microscopic analysis of the ...The characteristics,formation time,and origin of the sucrosic dolomite reservoirs in the Permian Qixia Formation of northwestern Sichuan Basin are analyzed.Core and outcrop description and microscopic analysis of the sucrosic dolomite samples are carried out.It is found that the dolomite has typical features different from other kinds of dolomites:(1)This dolomite is generally medium-coarse in crystal size,and often associated with very finely to finely crystalline dolomite and cave-filling dolomite.(2)Typical identification marks of eogenetic karstification are developed at the top of the upward-shallowing sequence.(3)The medium-coarse crystalline sucrosic dolomite is cut by the early diagenetic karst fabric,and is characterized by dolomite with dissolution edge,dolomite vadose silt in pores,and transgression clay filling between the medium-coarse dolomite crystals.The medium-coarse crystalline sucrosic dolomite was formed earlier than the eogenetic karstification.The sucrosic dolomite with occasional cloudy core and clear rim has bright cathodoluminescence,high inclusions temperature,significant negative skewness carbon and oxygen isotopic compositions,and rare-earth element(REE)pattern similar to seawater,indicating it experienced two periods of dolomitization,evaporative concentration reflux-infiltration and penecontemporaneous seawater circulation hydrothermal fluid dolomitization.The study results not only update the understanding on the dolomitization time of Qixia Formation,demonstrate that the sucrosic dolomite can be formed in the penecontemporaneous stage when seawater reflux superimposed with hydrothermal fluid effects,but also show that the taphorogenesis in the Dongwu period began in the Early Permian.Moreover,the dolomite controlled by the grain bank migration and terrain in the slope break appears in bands of large scale,this knowledge provides basis for expanding the exploration field of this type of reservoirs.展开更多
By integrating surface geology,seismic data,resistivity sections,and drilling data,the structural deformation characteristics of the frontier fault of thrust nappes were delineated in detail.The frontier fault of thru...By integrating surface geology,seismic data,resistivity sections,and drilling data,the structural deformation characteristics of the frontier fault of thrust nappes were delineated in detail.The frontier fault of thrust nappes in northwest Scihuan Basin is a buried thrust fault with partial exposure in the Xiangshuichang-Jiangyou area,forming fault propagation folds in the hanging-wall and without presenting large-scale basin-ward displacement along the gypsum-salt layer of the Triassic Jialingjiang Formation to the Triassic Leikoupo Formation.The southwestern portion of the frontier fault of thrust nappes(southwest of Houba)forms fault bend folds with multiple ramps and flats,giving rise to the Zhongba anticline due to hanging-wall slip along the upper flat of the Jialingjiang Formation.In contrast,the northeastern portion of the frontier fault of thrust nappes(northeast of Houba)presents upward steepening geometry,leading to surface exposure of Cambrian in its hanging-wall.With the frontier fault of thrust nappes as the boundary between the Longmenshan Mountain and the Sichuan Basin,the imbricated structural belt in the hanging-wall thrusted strongly in the Indosinian orogeny and was reactivated in the Himalayan orogeny,while the piedmont buried structural belt in the footwall was formed in the Himalayan orogeny.In the footwall of the frontier fault of thrust nappes,the piedmont buried structural belt has good configuration of source rocks,reservoir rocks and cap rocks,presenting good potential to form large gas reservoirs.In comparison,the hanging-wall of the frontier fault of thrust nappes north of Chonghua has poor condition of oil/gas preservation due to the surface exposure of Triassic and deeper strata,while the fault blocks in the hanging-wall from Chonghua to Wudu,with Jurassic cover and thicker gypsum-salt layer of the Jialingjiang formation,has relative better oil/gas preservation conditions and thus potential of oil/gas accumulation.The frontier fault of thrust nappes is not only the boundary between the Longmenshan Mountain and the Sichuan Basin,but also the boundary of the oil/gas accumulation system in northwestern Sichuan Basin.展开更多
Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbo...Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.展开更多
Analysis and research of large complex phenomena before and after the devastating earthquake to reduce the threat of natural disasters to human survival environment is of great significance.This paper analyzes the Wen...Analysis and research of large complex phenomena before and after the devastating earthquake to reduce the threat of natural disasters to human survival environment is of great significance.This paper analyzes the Wenchuan earthquake zone characteristics of gravity anomaly distributions,and then use edge detection and Euler deconvolution method to inverse Longmenshan gravity anomaly before earthquake.Fault distribution features and the general depth about the fault top of Longmenshan and its adjacent area before earthquake has been obtained.Morphology difference and possible earthquake formation have been analyzed through the Euler deconvolution result of gravity anomaly profile before and after the earthquake.展开更多
Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two se...Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two sets of shale,the Dongyuemiao and Da’anzhai Members,in the Ziliujing Formation in the Sichuan Basin.To identify the differential enrichment characteristics of organic matter and clarify its controlling factors,geochemical analyses of organic and inorganic geochemical analyses were performed.The results showed that the total organic carbon content of the Dongyuemiao shale(1.36%)is slightly higher than that of the Da’anzhai shale(0.95%).The enrichment of organic matter in the two shales resulted from the comprehensive controls of paleoproductivity,paleoenvironment,and terrigenous input,but different factors have different effects.In addition,driven by climate,the change in the sulfate concentration in the bottom water further led to the different intensities of bacterial sulfate reduction in early diagenesis.This made a great difference regarding organic matter accumulation in the two members.In general,climate may have played a dominant role in organic matter enrichment in the two sets of shale.展开更多
Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the control...Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin.展开更多
To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The...To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The fractures and vugs of Middle Permian Qixia–Maokou formations are filled with multi-stage medium-coarse saddle dolomites and associated hydrothermal minerals,which indicates that the early limestone/dolomite episodic alteration was caused by the large-scale,high-temperature,deep magnesium-rich brine along flowing channels such as basement faults or associated fractures under the tectonic compression and napping during the Indosinian.The time of magnesium-rich hydrothermal activity was from the Middle Triassic to the Late Triassic.The siliceous and calcite fillings were triggered by hydrothermal alteration in the Middle and Late Yanshanian Movement and Himalayan Movement.Hydrothermal dolomitization is controlled by fault,hydrothermal property,flowing channel and surrounding rock lithology,which occur as equilibrium effect of porosity and permeability.The thick massive grainstone/dolomites were mainly altered by modification such as hydrothermal dolomitization/recrystallization,brecciation and fracture-vugs filling.Early thin-medium packstones were mainly altered by dissolution and infilling of fracturing,bedding dolomitization,dissolution and associated mineral fillings.The dissolved vugs and fractures are the main reservoir space under hydrothermal conditions,and the connection of dissolved vugs and network fractures is favorable for forming high-quality dolomite reservoir.Hydrothermal dolomite reservoirs are developed within a range of 1 km near faults,with a thickness of 30–60 m.Hydrothermal dolomite reservoirs with local connected pore/vugs and fractures have exploration potential.展开更多
Due to the uncertainties posed by climate change,resilience has become an increasingly important variable for evaluating regional ecosystem stability.The assessment of Ecological Network Resilience(ENR)is crucial for ...Due to the uncertainties posed by climate change,resilience has become an increasingly important variable for evaluating regional ecosystem stability.The assessment of Ecological Network Resilience(ENR)is crucial for establishing mitigation strategies and sustainable socioeconomic development in arid regions.Shiyang River Basin is an arid watershed in Northwest China with complex characteristics,its ENR and spatial differentiation characteristics in 2020 were investigated in this work based on the Complex Adaptive System(CAS)theory.The results indicated that the mean Ecological Network Resilience Index(ENRI)value for the Shiyang River Basin was 0.390 in 2020,and the mean values in the southern mountainous,middle oasis,and northern desert regions of the basin were 0.598,0.461,and 0.237,respectively,demonstrating evident spatial differences.Additionally,the ENR of the basin exhibited distinct distribution characteristics across different dimension,whereas the trend of the integrated ENR of the basin was consistent with that of elemental,structural,and functional resilience,indicating the constructed three-region ENR model based on the logical relationship of element-structure-function was suitable for evaluation of the ENR in arid inland river watersheds.Furthermore,strategies for enhancing regional ENR were proposed from the perspective of adapting to climate change.展开更多
The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin w...The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency.展开更多
Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-develo...Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-developed region in western China,while the rural Qinghai-Tibetan Plateau(QTP)lies west of the SCB.Previous regional and national atmospheric modeling studies have sug-gested that large areas in the SCB-to-QTP transect region experience excessive deposition of sulfur and nitrogen.In this study,we applied a passive monitoring method at 11 sites(one in urban Chengdu and 10 from fivenature reserves)in this transect region from September 2021 to October 2022 to confirm the high sulfur and nitrogen deposition fluxes and to understand the gaps between the modeling and observation results for this transect region.These observations suggest that the five reserves are under eutrophication risk,and only two reserves are partially under acidification risk.Owing to the complex topography and landscapes,both sulfur and nitrogen deposition and critical loads exhibit large spatial variations within a reserve,such as Mount Emei.Regional atmospheric modeling may not accurately capture the spatial variations in deposition fluxes within a reserve;however,it can capture general spatial patterns over the entire transect.This study demonstrates that a combination of state-of-the-art atmospheric chemical models and low-cost monitoring methods is helpful for ecological risk assessments at a regional scale.展开更多
Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productiv...Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage.展开更多
This study analyzed the characteristics and types of the Lower Silurian shale gas reservoirs in and around Sichuan Basin through field observations, slices, Ar-ion-beam milling, scanning electron microscopy, and x-ray...This study analyzed the characteristics and types of the Lower Silurian shale gas reservoirs in and around Sichuan Basin through field observations, slices, Ar-ion-beam milling, scanning electron microscopy, and x-ray diffraction analysis of 25 black shale outcrops and samples. Two main types of shale gas reservoirs were determined, i.e., fractures and pores. Fractures were classified into five categories, i.e., giant, large, medium, small, and micro, according to the features of the shale gas reservoirs, effect of fracture on gas accumulation, and fracture nature. Pore types include organic matter pores, mineral pores(mineral surface, intraparticle, interparticle, and corrosional pore), and nanofractures. The various fracture types, fracture scales, pore types, and pore sizes exert different controls over the gas storage and production capacity. Pores serve as a reservoir for gas storage and, the gas storage capacity can be determined using pores; fractures serve as pathways for gas migration, and gas production capacity can be determined using them.展开更多
Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded...Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.展开更多
文摘The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps.
基金jointly funded by projects supported by the National Natural Science Foundation of China(Grant No.41872150)the Joint Funds of the National Natural Science Foundation of China(Grant No.U19B6003)Major Scientific and Technological Projects of CNPC during the 13th five-year plan(No.2019A-02-10)。
文摘Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.
基金partly supported by the National Natural Science Foundation of China (Grant No. 4224100017)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance (Grant No.2020CX010300)。
文摘In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin.
文摘Production performance of the Wufeng-Longmaxi shales varies significantly among Fuling,Weirong,and Wulong fields in the Sichuan Basin.Total organic carbon(TOC)content,mineralogy,and organic matter(OM)pore characteristics are investigated to identify key factors governing sweet spots.Siliceous shales with good preservation conditions in the Fuling Field exhibit large thickness,high TOC content and thin-section porosity(TSP),and well-developed OM macropores,thus high initial production and estimated ultimate recovery(EUR).Thin carbonate-containing siliceous shales with good preservation conditions in the Weirong Field feature medium-to-high TOC and well-developed OM macropores but low TSP,leading to high initial production but low EUR.Siliceous shales with poor preservation conditions in the Wulong Field are characterized by large thickness,high TOC,low TSP and poorly-developed OM macropores,causing low initial production and EUR.Both sedimentary and preservation conditions are intrinsic decisive factors of sweet spots,as they control the mineral composition,TOC,and OM macropore development.Deep-water shales in transgressive systems tracts(TSTs)exhibit better-developed OM macropores and greater TOC compared to highstand systems tracts(HSTs).OM macropores are most prevalent in siliceous shales,followed by carbonate-containing siliceous shales and then argillaceous shales.Furthermore,good preservation conditions are conducive to retain OM macropores with low pore aspect ratio(PAR).Comparison among the three fields shows that high-TOC silicious shales with good preservation conditions are the highest in TSP and EUR.Therefore,organic richness,lithofacies,and preservation conditions are the major factors which determine OM pore development,governing the sweet spots of the Wufeng-Longmaxi shales.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金Supported by the National Natural Science Foundation of China (41802147)China Postdoctoral Science(2019M651785)。
文摘Based on analysis of outcrop,drilling,logging and seismic data,and geotectonic background,the lithofacies paleogeography and paleokarst geomorphology of the Middle Permian Maokou Formation in the northwestern Sichuan Basin were reconstructed,and the petroleum geological significance of the lithofacies paleogeography and paleokarst geomorphology were discussed.The Maokou Formation is divided into 3 long-term cycles,namely LSCl,LSC2 and LSC3,which correspond to the Member 1,Member 2 and Member 3 of the Maokou Formation,respectively.Controlled by the extensional structure caused by opening of the Mianlue Ocean in the north margin of the upper Yangtze blocks and basement faults produced by mantle plume uplifting,the area had tectonic differentiation in NWW and NE,and sedimentary basement took on episodic settlement from north to south,as a result,the sedimentary systems of Member 1 to Member 3 gradually evolved from carbonate platform to platform-slope-continental shelf.According to the residual thickness,paleokarst geomorphologic units such as karst highland,karst slope and karst depression at different stages were reconstructed.The karst geomorphological units were developed successively on the basis of sedimentary geomorphology.Sedimentary facies and paleokarst geomorphology are of great significance for oil and gas accumulation.The Maokou Formation in northwestern Sichuan has two kinds of most favorable reservoir zone combinations:high energy grain shoal and karst monadnock,platform margin slope and karst slope.Based on this understanding,the planar distribution of the two kinds of reservoir zones were predicted by overlapping the favorable reservoir facies belt with paleokarst geomorphology.The study results provide a new idea and reference for the exploration deployment of the Middle Permian Maokou Formation in the Sichuan Basin.
基金Supported by the National Science&Technology Major Project of China(2016ZX05004002-001)Natural Science Foundation(41802147)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance
文摘The characteristics,formation time,and origin of the sucrosic dolomite reservoirs in the Permian Qixia Formation of northwestern Sichuan Basin are analyzed.Core and outcrop description and microscopic analysis of the sucrosic dolomite samples are carried out.It is found that the dolomite has typical features different from other kinds of dolomites:(1)This dolomite is generally medium-coarse in crystal size,and often associated with very finely to finely crystalline dolomite and cave-filling dolomite.(2)Typical identification marks of eogenetic karstification are developed at the top of the upward-shallowing sequence.(3)The medium-coarse crystalline sucrosic dolomite is cut by the early diagenetic karst fabric,and is characterized by dolomite with dissolution edge,dolomite vadose silt in pores,and transgression clay filling between the medium-coarse dolomite crystals.The medium-coarse crystalline sucrosic dolomite was formed earlier than the eogenetic karstification.The sucrosic dolomite with occasional cloudy core and clear rim has bright cathodoluminescence,high inclusions temperature,significant negative skewness carbon and oxygen isotopic compositions,and rare-earth element(REE)pattern similar to seawater,indicating it experienced two periods of dolomitization,evaporative concentration reflux-infiltration and penecontemporaneous seawater circulation hydrothermal fluid dolomitization.The study results not only update the understanding on the dolomitization time of Qixia Formation,demonstrate that the sucrosic dolomite can be formed in the penecontemporaneous stage when seawater reflux superimposed with hydrothermal fluid effects,but also show that the taphorogenesis in the Dongwu period began in the Early Permian.Moreover,the dolomite controlled by the grain bank migration and terrain in the slope break appears in bands of large scale,this knowledge provides basis for expanding the exploration field of this type of reservoirs.
基金Supported by the National Natural Science Foundation of China(41872143)National Science and Technology Major Project of China(2016ZX05007-004)PetroChina Science and Technology Major Project(2016E-0604)。
文摘By integrating surface geology,seismic data,resistivity sections,and drilling data,the structural deformation characteristics of the frontier fault of thrust nappes were delineated in detail.The frontier fault of thrust nappes in northwest Scihuan Basin is a buried thrust fault with partial exposure in the Xiangshuichang-Jiangyou area,forming fault propagation folds in the hanging-wall and without presenting large-scale basin-ward displacement along the gypsum-salt layer of the Triassic Jialingjiang Formation to the Triassic Leikoupo Formation.The southwestern portion of the frontier fault of thrust nappes(southwest of Houba)forms fault bend folds with multiple ramps and flats,giving rise to the Zhongba anticline due to hanging-wall slip along the upper flat of the Jialingjiang Formation.In contrast,the northeastern portion of the frontier fault of thrust nappes(northeast of Houba)presents upward steepening geometry,leading to surface exposure of Cambrian in its hanging-wall.With the frontier fault of thrust nappes as the boundary between the Longmenshan Mountain and the Sichuan Basin,the imbricated structural belt in the hanging-wall thrusted strongly in the Indosinian orogeny and was reactivated in the Himalayan orogeny,while the piedmont buried structural belt in the footwall was formed in the Himalayan orogeny.In the footwall of the frontier fault of thrust nappes,the piedmont buried structural belt has good configuration of source rocks,reservoir rocks and cap rocks,presenting good potential to form large gas reservoirs.In comparison,the hanging-wall of the frontier fault of thrust nappes north of Chonghua has poor condition of oil/gas preservation due to the surface exposure of Triassic and deeper strata,while the fault blocks in the hanging-wall from Chonghua to Wudu,with Jurassic cover and thicker gypsum-salt layer of the Jialingjiang formation,has relative better oil/gas preservation conditions and thus potential of oil/gas accumulation.The frontier fault of thrust nappes is not only the boundary between the Longmenshan Mountain and the Sichuan Basin,but also the boundary of the oil/gas accumulation system in northwestern Sichuan Basin.
基金Supported by the National Natural Science Foundation of China(42090022)。
文摘Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.
基金funded by the National Natural Science Foundation of China(Grant Nos.42304153,42104138 and U2244220)China Geological Survey(Grant Nos.DD20221715,DD20243057,DD20243216).
文摘Analysis and research of large complex phenomena before and after the devastating earthquake to reduce the threat of natural disasters to human survival environment is of great significance.This paper analyzes the Wenchuan earthquake zone characteristics of gravity anomaly distributions,and then use edge detection and Euler deconvolution method to inverse Longmenshan gravity anomaly before earthquake.Fault distribution features and the general depth about the fault top of Longmenshan and its adjacent area before earthquake has been obtained.Morphology difference and possible earthquake formation have been analyzed through the Euler deconvolution result of gravity anomaly profile before and after the earthquake.
基金This work was funded by the National Natural Science Foundation of China(Grant No.42002139 and U20B6001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010404).
文摘Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two sets of shale,the Dongyuemiao and Da’anzhai Members,in the Ziliujing Formation in the Sichuan Basin.To identify the differential enrichment characteristics of organic matter and clarify its controlling factors,geochemical analyses of organic and inorganic geochemical analyses were performed.The results showed that the total organic carbon content of the Dongyuemiao shale(1.36%)is slightly higher than that of the Da’anzhai shale(0.95%).The enrichment of organic matter in the two shales resulted from the comprehensive controls of paleoproductivity,paleoenvironment,and terrigenous input,but different factors have different effects.In addition,driven by climate,the change in the sulfate concentration in the bottom water further led to the different intensities of bacterial sulfate reduction in early diagenesis.This made a great difference regarding organic matter accumulation in the two members.In general,climate may have played a dominant role in organic matter enrichment in the two sets of shale.
基金Supported by the National Natural Science Foundation of China(42172177)CNPC Scientific Research and Technological Development Project(2021DJ05)PetroChina-Southwest University of Petroleum Innovation Consortium Project(2020CX020000).
文摘Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin.
基金Supported by the National Science and Technology Major Project(2016ZX05007004-001)Innovation Fund Project of CNPC Carbonate Rock Key Laboratory(RIPED-HZDZY-2019-JS-695).
文摘To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The fractures and vugs of Middle Permian Qixia–Maokou formations are filled with multi-stage medium-coarse saddle dolomites and associated hydrothermal minerals,which indicates that the early limestone/dolomite episodic alteration was caused by the large-scale,high-temperature,deep magnesium-rich brine along flowing channels such as basement faults or associated fractures under the tectonic compression and napping during the Indosinian.The time of magnesium-rich hydrothermal activity was from the Middle Triassic to the Late Triassic.The siliceous and calcite fillings were triggered by hydrothermal alteration in the Middle and Late Yanshanian Movement and Himalayan Movement.Hydrothermal dolomitization is controlled by fault,hydrothermal property,flowing channel and surrounding rock lithology,which occur as equilibrium effect of porosity and permeability.The thick massive grainstone/dolomites were mainly altered by modification such as hydrothermal dolomitization/recrystallization,brecciation and fracture-vugs filling.Early thin-medium packstones were mainly altered by dissolution and infilling of fracturing,bedding dolomitization,dissolution and associated mineral fillings.The dissolved vugs and fractures are the main reservoir space under hydrothermal conditions,and the connection of dissolved vugs and network fractures is favorable for forming high-quality dolomite reservoir.Hydrothermal dolomite reservoirs are developed within a range of 1 km near faults,with a thickness of 30–60 m.Hydrothermal dolomite reservoirs with local connected pore/vugs and fractures have exploration potential.
基金Under the Major Special Science and Technology Project of Gansu Province(No.23ZDKA0004)。
文摘Due to the uncertainties posed by climate change,resilience has become an increasingly important variable for evaluating regional ecosystem stability.The assessment of Ecological Network Resilience(ENR)is crucial for establishing mitigation strategies and sustainable socioeconomic development in arid regions.Shiyang River Basin is an arid watershed in Northwest China with complex characteristics,its ENR and spatial differentiation characteristics in 2020 were investigated in this work based on the Complex Adaptive System(CAS)theory.The results indicated that the mean Ecological Network Resilience Index(ENRI)value for the Shiyang River Basin was 0.390 in 2020,and the mean values in the southern mountainous,middle oasis,and northern desert regions of the basin were 0.598,0.461,and 0.237,respectively,demonstrating evident spatial differences.Additionally,the ENR of the basin exhibited distinct distribution characteristics across different dimension,whereas the trend of the integrated ENR of the basin was consistent with that of elemental,structural,and functional resilience,indicating the constructed three-region ENR model based on the logical relationship of element-structure-function was suitable for evaluation of the ENR in arid inland river watersheds.Furthermore,strategies for enhancing regional ENR were proposed from the perspective of adapting to climate change.
基金Supported by the Enterprise Innovation and Development Joint Fund of National Natural Science Foundation of China(U19B6003)National Natural Science Foundation of China(41872150)。
文摘The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency.
基金Under the auspices of National Natural Science Foundation of China(No.41929002)Science and Technology Department of Sichuan Province(No.2021YFS0338)。
文摘Enhanced sulfur and nitrogen deposition has been observed in many transect regions worldwide,from urban/agricultural areas to mountains.The Sichuan Basin(SCB),with 18 prefectural cities,is the most economically-developed region in western China,while the rural Qinghai-Tibetan Plateau(QTP)lies west of the SCB.Previous regional and national atmospheric modeling studies have sug-gested that large areas in the SCB-to-QTP transect region experience excessive deposition of sulfur and nitrogen.In this study,we applied a passive monitoring method at 11 sites(one in urban Chengdu and 10 from fivenature reserves)in this transect region from September 2021 to October 2022 to confirm the high sulfur and nitrogen deposition fluxes and to understand the gaps between the modeling and observation results for this transect region.These observations suggest that the five reserves are under eutrophication risk,and only two reserves are partially under acidification risk.Owing to the complex topography and landscapes,both sulfur and nitrogen deposition and critical loads exhibit large spatial variations within a reserve,such as Mount Emei.Regional atmospheric modeling may not accurately capture the spatial variations in deposition fluxes within a reserve;however,it can capture general spatial patterns over the entire transect.This study demonstrates that a combination of state-of-the-art atmospheric chemical models and low-cost monitoring methods is helpful for ecological risk assessments at a regional scale.
基金SINOPEC's Scientific and Technological Research Project:Research on effective production strategies of Jurassic continental shale oil and gas(No.P21078-5).
文摘Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage.
基金supported by the National Natural Science Foundation of China(Grant No.41202103)
文摘This study analyzed the characteristics and types of the Lower Silurian shale gas reservoirs in and around Sichuan Basin through field observations, slices, Ar-ion-beam milling, scanning electron microscopy, and x-ray diffraction analysis of 25 black shale outcrops and samples. Two main types of shale gas reservoirs were determined, i.e., fractures and pores. Fractures were classified into five categories, i.e., giant, large, medium, small, and micro, according to the features of the shale gas reservoirs, effect of fracture on gas accumulation, and fracture nature. Pore types include organic matter pores, mineral pores(mineral surface, intraparticle, interparticle, and corrosional pore), and nanofractures. The various fracture types, fracture scales, pore types, and pore sizes exert different controls over the gas storage and production capacity. Pores serve as a reservoir for gas storage and, the gas storage capacity can be determined using pores; fractures serve as pathways for gas migration, and gas production capacity can be determined using them.
基金the National Natural Science Foundation of china (poject No. 49070140)
文摘Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.