Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method...Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method of the valid/invalid item is developed on the relation between reachability matrix and valid items. And valid items are explained from the perspective of graph theory. An incremental augment algorithm for constructing Qr matrix is proposed based on the idea of incremental forward regression, and its validity is theoretically considered. Results of empirical tests are given in order to compare the performance of the incremental augment algo-rithm and the Tatsuoka algorithm upon the running time. Empirical evidence shows that the algorithm outper-forms the Tatsuoka algorithm, and the analysis of the two algorithms also show linear growth with respect to the number of valid items. Mathematical models with 10 attributes are built for the two algorithms by the linear regression analysis.展开更多
The concepts of Markov process in random environment, q-matrix in random environment, and q-process in random environment are introduced. The minimal q-process in random environment is constructed and the necessary an...The concepts of Markov process in random environment, q-matrix in random environment, and q-process in random environment are introduced. The minimal q-process in random environment is constructed and the necessary and sufficient conditions for the uniqueness of q-process in random environment are given.展开更多
The concepts of Markov process in random environment, q-matrix in random environment and q-process in random environment are introduced. Three forms of random Kolmoogrov farward (or backward) equations are introduce...The concepts of Markov process in random environment, q-matrix in random environment and q-process in random environment are introduced. Three forms of random Kolmoogrov farward (or backward) equations are introduced and the equivalence of these three forms are also proved. Moreover any conservative q-process in random environment satisfies random Kolmogrov backward equation.展开更多
This article is a continuation of[9].Based on the discussion of random Kolmogorov forward(backward)equations,for any given q-matrix in random environment, Q(θ)=(q(θ;x,y),x,y∈X),an infinite class of q-proces...This article is a continuation of[9].Based on the discussion of random Kolmogorov forward(backward)equations,for any given q-matrix in random environment, Q(θ)=(q(θ;x,y),x,y∈X),an infinite class of q-processes in random environments satisfying the random Kolmogorov forward(backward)equation is constructed.Moreover, under some conditions,all the q-processes in random environments satisfying the random Kolmogorov forward(backward)equation are constructed.展开更多
The present paper is devoted to the generalized multi parameters golden ratio. Variety of features like two-dimensional continued fractions, and conjectures on geometrical properties concerning to this subject are als...The present paper is devoted to the generalized multi parameters golden ratio. Variety of features like two-dimensional continued fractions, and conjectures on geometrical properties concerning to this subject are also presented. Wider generalization of Binet, Pell and Gazale formulas and wider generalizations of symmetric hyperbolic Fibonacci and Lucas functions presented by Stakhov and Rozin are also achieved. Geometrical applications such as applications in angle trisection and easy drawing of every regular polygons are developed. As a special case, some famous identities like Cassini’s, Askey’s are derived and presented, and also a new class of multi parameters hyperbolic functions and their properties are introduced, finally a generalized Q-matrix called Gn-matrix of order n being a generating matrix for the generalized Fibonacci numbers of order n and its inverse are created. The corresponding code matrix will prevent the attack to the data based on previous matrix.展开更多
This paper introduces some efficient initials for a well-known algorithm (an inverse iteration) for computing the maximal eigenpair of a class of real matrices. The initials not only avoid the collapse of the algori...This paper introduces some efficient initials for a well-known algorithm (an inverse iteration) for computing the maximal eigenpair of a class of real matrices. The initials not only avoid the collapse of the algorithm but are also unexpectedly efficient. The initials presented here are based on our analytic estimates of the maximal eigenvalue and a mimic of its eigenvector for many years of accumulation in the study of stochastic stability speed. In parallel, the same problem for computing the next to the maximal eigenpair is also studied.展开更多
基金Supported by the National Natural Science Foundation of China (30860084,60673014,60263005)the Backbone Young Teachers Foundation of Fujian Normal University(2008100244)the Department of Education Foundation of Fujian Province (ZA09047)~~
文摘Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method of the valid/invalid item is developed on the relation between reachability matrix and valid items. And valid items are explained from the perspective of graph theory. An incremental augment algorithm for constructing Qr matrix is proposed based on the idea of incremental forward regression, and its validity is theoretically considered. Results of empirical tests are given in order to compare the performance of the incremental augment algo-rithm and the Tatsuoka algorithm upon the running time. Empirical evidence shows that the algorithm outper-forms the Tatsuoka algorithm, and the analysis of the two algorithms also show linear growth with respect to the number of valid items. Mathematical models with 10 attributes are built for the two algorithms by the linear regression analysis.
文摘The concepts of Markov process in random environment, q-matrix in random environment, and q-process in random environment are introduced. The minimal q-process in random environment is constructed and the necessary and sufficient conditions for the uniqueness of q-process in random environment are given.
文摘The concepts of Markov process in random environment, q-matrix in random environment and q-process in random environment are introduced. Three forms of random Kolmoogrov farward (or backward) equations are introduced and the equivalence of these three forms are also proved. Moreover any conservative q-process in random environment satisfies random Kolmogrov backward equation.
基金the NNSF of China(10371092,10771185,10471148)the Foundation of Wuhan University
文摘This article is a continuation of[9].Based on the discussion of random Kolmogorov forward(backward)equations,for any given q-matrix in random environment, Q(θ)=(q(θ;x,y),x,y∈X),an infinite class of q-processes in random environments satisfying the random Kolmogorov forward(backward)equation is constructed.Moreover, under some conditions,all the q-processes in random environments satisfying the random Kolmogorov forward(backward)equation are constructed.
文摘The present paper is devoted to the generalized multi parameters golden ratio. Variety of features like two-dimensional continued fractions, and conjectures on geometrical properties concerning to this subject are also presented. Wider generalization of Binet, Pell and Gazale formulas and wider generalizations of symmetric hyperbolic Fibonacci and Lucas functions presented by Stakhov and Rozin are also achieved. Geometrical applications such as applications in angle trisection and easy drawing of every regular polygons are developed. As a special case, some famous identities like Cassini’s, Askey’s are derived and presented, and also a new class of multi parameters hyperbolic functions and their properties are introduced, finally a generalized Q-matrix called Gn-matrix of order n being a generating matrix for the generalized Fibonacci numbers of order n and its inverse are created. The corresponding code matrix will prevent the attack to the data based on previous matrix.
基金Acknowledgements The main results of the paper have been reported at Anhui Normal University, Jiangsu Normal University, the International Workshop on SDEs and Numerical Methods at Shanghai Normal University, Workshop on Markov Processes and Their Applications at Hunan University of Arts and Science, and Workshop of Probability Theory with Applications at University of Macao. The author acknowledges Professors Dong-Jin Zhu, Wan-Ding Ding, Ying-Chao Xie, Xue-Rong Mao, Xiang-Qun Yang, Xu-Yan Xiang, Jie Xiong, Li-Hu Xu, and their teams for very warm hospitality and financial support. The author also thanks Ms. Yue-Shuang Li for her assistance in computing large matrices. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11131003), the "985" project from the Ministry of Education in China, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘This paper introduces some efficient initials for a well-known algorithm (an inverse iteration) for computing the maximal eigenpair of a class of real matrices. The initials not only avoid the collapse of the algorithm but are also unexpectedly efficient. The initials presented here are based on our analytic estimates of the maximal eigenvalue and a mimic of its eigenvector for many years of accumulation in the study of stochastic stability speed. In parallel, the same problem for computing the next to the maximal eigenpair is also studied.