Applying the crustobody geotectonic theory to geological prospecting at the Lancangjiang river metallogenic belt in western Yunnan province, and on the basis of the basic geological background of western Yunnan and th...Applying the crustobody geotectonic theory to geological prospecting at the Lancangjiang river metallogenic belt in western Yunnan province, and on the basis of the basic geological background of western Yunnan and the space-time evolution-movement historical-dynamic features of the Lancangjiang river tectonic belt, the author has discussed firstly the metallogenesis of the Lancangjiang river transitional field tectonic zone, which can provide a new theoretical foundation for exploring the space-time laws of mineralization in this region.展开更多
The Western Yunnan located at the southeast margin of east Himalaya\|Burman syntaxis. A great number of small basins filled with lacustrine developed in the Indochina block during the Paleocene\|middle Eocene. Occurre...The Western Yunnan located at the southeast margin of east Himalaya\|Burman syntaxis. A great number of small basins filled with lacustrine developed in the Indochina block during the Paleocene\|middle Eocene. Occurrence of basins as en chelon arrangement suggests that they were formed under tectonic setting of right\|lateral strike\|slip. The north termination of main faults controlling basins deposition and evolution, meet the Red River fault as an acute angle. The Lanping basin, one representative of all basins, is chosen to study its formation mechanism. Facts of rapid lateral phase change, sediment offset from their source and lateral migration of alluvial fan, indicate that the Lanping basin is a strike\|slip basin and its boundary main fault is syndepositional left\|lateral strike\|slip normal fault. Basin formation was controlled by mechanism of strike\|slip and pull\|apart, the Lanping basin belongs to extension strike\|slip basin. The nature of the Lanping basin and infill suggest that the boundary fault controlling basin deposit was formed during right\|lateral strike\|slip deformation of the Red River fault. Whether formation mechanism of single basin or occurrence of basins supported that the Red River fault was a right\|lateral strike\|slip fault during the Paleocene\|middle Eocene.展开更多
The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analy...The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The above four kinds of teleconnections reflect the links among the Asian monsoon subsystems of ISM, EASM, and WNPSM during the northward advancing march of the Asian summer monsoons.展开更多
Soil erosion and deposition in a tropical mountainous river basin, viz., Pambar River Basin (PRB), in a rain shadow region of the southern Western Ghats (India) were modelled using Revised Universal Soil Loss Equation...Soil erosion and deposition in a tropical mountainous river basin, viz., Pambar River Basin (PRB), in a rain shadow region of the southern Western Ghats (India) were modelled using Revised Universal Soil Loss Equation (RUSLE) and transport limited sediment delivery (TLSD) function in GIS. Mean gross soil erosion in the basin is 11.70 t ha-1 yr-1, and is comparable with the results of previous soil erosion studies from the region. However, mean net soil erosion from the basin is 2.92 t ha-1 yr-1 only, which is roughly 25%of the gross soil erosion. Although natural vegetation belts show relatively higher gross- and net-soil erosion rates (mainly due to high LS and C factors), their sediment transport efficiency is remarkably less, compared to the land use/ land cover types with anthropogenic signatures (i.e., plantations and crop-lands). Despite the lesser amount of annual rainfall, the high rates of soil loss from the semi-arid areas of the basin might be the result of the poor protective vegetation cover as well as isolated high intensity rainfall events. The study highlights the significance of climate-specific plans for soil erosion manage-ment and conservation of the soil resources of the basins developed in rain shadow regions.展开更多
文摘Applying the crustobody geotectonic theory to geological prospecting at the Lancangjiang river metallogenic belt in western Yunnan province, and on the basis of the basic geological background of western Yunnan and the space-time evolution-movement historical-dynamic features of the Lancangjiang river tectonic belt, the author has discussed firstly the metallogenesis of the Lancangjiang river transitional field tectonic zone, which can provide a new theoretical foundation for exploring the space-time laws of mineralization in this region.
文摘The Western Yunnan located at the southeast margin of east Himalaya\|Burman syntaxis. A great number of small basins filled with lacustrine developed in the Indochina block during the Paleocene\|middle Eocene. Occurrence of basins as en chelon arrangement suggests that they were formed under tectonic setting of right\|lateral strike\|slip. The north termination of main faults controlling basins deposition and evolution, meet the Red River fault as an acute angle. The Lanping basin, one representative of all basins, is chosen to study its formation mechanism. Facts of rapid lateral phase change, sediment offset from their source and lateral migration of alluvial fan, indicate that the Lanping basin is a strike\|slip basin and its boundary main fault is syndepositional left\|lateral strike\|slip normal fault. Basin formation was controlled by mechanism of strike\|slip and pull\|apart, the Lanping basin belongs to extension strike\|slip basin. The nature of the Lanping basin and infill suggest that the boundary fault controlling basin deposit was formed during right\|lateral strike\|slip deformation of the Red River fault. Whether formation mechanism of single basin or occurrence of basins supported that the Red River fault was a right\|lateral strike\|slip fault during the Paleocene\|middle Eocene.
基金Supported by the National Science and Technology Support Program (2007BAC03A01)the National Plan on Key Basic Research and Development (2006CB403604).
文摘The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The above four kinds of teleconnections reflect the links among the Asian monsoon subsystems of ISM, EASM, and WNPSM during the northward advancing march of the Asian summer monsoons.
文摘Soil erosion and deposition in a tropical mountainous river basin, viz., Pambar River Basin (PRB), in a rain shadow region of the southern Western Ghats (India) were modelled using Revised Universal Soil Loss Equation (RUSLE) and transport limited sediment delivery (TLSD) function in GIS. Mean gross soil erosion in the basin is 11.70 t ha-1 yr-1, and is comparable with the results of previous soil erosion studies from the region. However, mean net soil erosion from the basin is 2.92 t ha-1 yr-1 only, which is roughly 25%of the gross soil erosion. Although natural vegetation belts show relatively higher gross- and net-soil erosion rates (mainly due to high LS and C factors), their sediment transport efficiency is remarkably less, compared to the land use/ land cover types with anthropogenic signatures (i.e., plantations and crop-lands). Despite the lesser amount of annual rainfall, the high rates of soil loss from the semi-arid areas of the basin might be the result of the poor protective vegetation cover as well as isolated high intensity rainfall events. The study highlights the significance of climate-specific plans for soil erosion manage-ment and conservation of the soil resources of the basins developed in rain shadow regions.