In the sea area west of the middle line of Taiwan Straits, 116°40′~120°30′E, 22°22.9′~25°43′N, four cruises of comprehensive survey were conducted by the Third Institute of Oceanography, Stat...In the sea area west of the middle line of Taiwan Straits, 116°40′~120°30′E, 22°22.9′~25°43′N, four cruises of comprehensive survey were conducted by the Third Institute of Oceanography, State Oceanic Administration, from May, 1984 to February, 1985. The data concerned were taken from the quantitative samples obtained by using large-sized standard zooplankton nets, while the values adopted such as hydrological and chemical data of the various stations were from the average values of the field data of each one-meter layer.展开更多
On the basis of mixture theory of concentration of Helland-Hansen (Mao et al, 1964; Helland-Hansen, 1916), this paper takes salinity as a conservative factor in the process of dilution and mixture and selects by relat...On the basis of mixture theory of concentration of Helland-Hansen (Mao et al, 1964; Helland-Hansen, 1916), this paper takes salinity as a conservative factor in the process of dilution and mixture and selects by relating analysis the bydrological and chemical factors which are closely related to salinity. Then making use of the Q type multi-dimensions cluster analysis, we get the results that the water masses in the western Taiwan Strait include the follying: the coastal water along Fujian, Zhejiang and Guangdong Provinces, the diluted fresh water of Minjiang, Jiulong and Hanjiang Rivers; the mixing water in the Taiwan Strait; upwelling cold/warm water to the northwest of the Taiwan Shoal and the upwelling water to the east of Guangdong. The mixing weter in the Taiwan Strait during spring and summer is composed of a Kuroshio branch, the surface weter of the South China Sea, outal wier along Fujian, Zhejiang and Guangdong Provinces. While in autunm and winter, it is mixed up from Kuroshio branch, the shelf weter in the East China Sea, and the coastal water along Fujian, Zhejiang and Guangdong. There is an obvious seasonal change of growth and decline in these water masses.展开更多
文摘In the sea area west of the middle line of Taiwan Straits, 116°40′~120°30′E, 22°22.9′~25°43′N, four cruises of comprehensive survey were conducted by the Third Institute of Oceanography, State Oceanic Administration, from May, 1984 to February, 1985. The data concerned were taken from the quantitative samples obtained by using large-sized standard zooplankton nets, while the values adopted such as hydrological and chemical data of the various stations were from the average values of the field data of each one-meter layer.
文摘On the basis of mixture theory of concentration of Helland-Hansen (Mao et al, 1964; Helland-Hansen, 1916), this paper takes salinity as a conservative factor in the process of dilution and mixture and selects by relating analysis the bydrological and chemical factors which are closely related to salinity. Then making use of the Q type multi-dimensions cluster analysis, we get the results that the water masses in the western Taiwan Strait include the follying: the coastal water along Fujian, Zhejiang and Guangdong Provinces, the diluted fresh water of Minjiang, Jiulong and Hanjiang Rivers; the mixing water in the Taiwan Strait; upwelling cold/warm water to the northwest of the Taiwan Shoal and the upwelling water to the east of Guangdong. The mixing weter in the Taiwan Strait during spring and summer is composed of a Kuroshio branch, the surface weter of the South China Sea, outal wier along Fujian, Zhejiang and Guangdong Provinces. While in autunm and winter, it is mixed up from Kuroshio branch, the shelf weter in the East China Sea, and the coastal water along Fujian, Zhejiang and Guangdong. There is an obvious seasonal change of growth and decline in these water masses.