The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in Chin...The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific.展开更多
It is generally agreed that El Nino can be classified into East Pacific(EP)and Central Pacific(CP)types.Nevertheless,little is known about the relationship between these two types of El Ni?o and land surface climate e...It is generally agreed that El Nino can be classified into East Pacific(EP)and Central Pacific(CP)types.Nevertheless,little is known about the relationship between these two types of El Ni?o and land surface climate elements.This study investigates the linkage between EP/CP El Ni?o and summer streamflow over the Yellow and Yangtze River basins and their possible mechanisms.Over the Yellow River basin,the anomalous streamflow always manifests as positive(negative)in EP(CP)years,with a correlation coefficient of 0.39(-0.37);while over the Yangtze River basin,the anomalous streamflow shows as positive in both EP and CP years,with correlation coefficients of 0.72 and 0.48,respectively.Analyses of the surface hydrological cycle indicate that the streamflow is more influenced by local evapotranspiration(ET)than precipitation over the Yellow River basin,while it is dominantly affected by precipitation over the Yangtze River basin.The different features over these two river basins can be explained by the anomalous atmospheric circulation,which is cyclonic(anticyclonic)north(south)of 30°N over East Asia.EP years are dominated by two anticyclones,which bring strong water vapor convergence and induce more precipitation but less ET,and subsequently increase streamflow and flooding risks.In CP years,especially over the Yellow River basin,two cyclones dominate and lead to water vapor divergence and reduce moisture arriving.Meanwhile,the ET enhances mainly due to local high surface air temperature,which further evaporates water from the soil.As a result,the streamflow decreases,which will then increase the drought risk.展开更多
We demonstrate that there is significant skill in the GloSea5 operational seasonal forecasting system for predicting June mean rainfall in the middle/lower Yangtze River basin up to four months in advance.Much of the ...We demonstrate that there is significant skill in the GloSea5 operational seasonal forecasting system for predicting June mean rainfall in the middle/lower Yangtze River basin up to four months in advance.Much of the rainfall in this region during June is contributed by the mei-yu rain band.We find that similar skill exists for predicting the East Asian summer monsoon index(EASMI)on monthly time scales,and that the latter could be used as a proxy to predict the regional rainfall.However,there appears to be little to be gained from using the predicted EASMI as a proxy for regional rainfall on monthly time scales compared with predicting the rainfall directly.Although interannual variability of the June mean rainfall is affected by synoptic and intraseasonal variations,which may be inherently unpredictable on the seasonal forecasting time scale,the major influence of equatorial Pacific sea surface temperatures from the preceding winter on the June mean rainfall is captured by the model through their influence on the western North Pacific subtropical high.The ability to predict the June mean rainfall in the middle and lower Yangtze River basin at a lead time of up to 4 months suggests the potential for providing early information to contingency planners on the availability of water during the summer season.展开更多
The Yangtze–Huai River Basin(YHRB)always suffers from anomalously heavy rainfall during the warm season,and has been well explored as a whole area during the past several decades.In this study,the YHRB is divided int...The Yangtze–Huai River Basin(YHRB)always suffers from anomalously heavy rainfall during the warm season,and has been well explored as a whole area during the past several decades.In this study,the YHRB is divided into two core regions-the northern YHRB(nYHRB)and southern YHRB(sYHRB)-based on 29-year(1979–2007)June–July–August(JJA)temporally averaged daily rainfall rates and the standard deviation of rainfall.A spectral analysis of JJA daily rainfall data over these 29 years reveals that a 3–7-day synoptic-timescale high-frequency mode is absolutely dominant over the nYHRB,with 10–20-day and 15–40-day modes playing a secondary role.By contrast,3–7-day and 10–20-day modes are both significant over the sYHRB,with 7–14-day,15–40-day,and 20–60-day modes playing secondary roles.Based on a comparison between bandpass-filtered rainfall anomalies and original rainfall series,a total of 42,1,5,and 3 heavy rainfall events(daily rainfall amounts in the top 5%of rainy days)are detected over the nYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 15–40-day variation disturbances.Meanwhile,a total of 28,8,12,and 6 heavy rainfall events are detected over the sYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 20–60-day variation disturbances.The results have important implications for understanding the duration of summer heavy rainfall events over both regions.展开更多
Rainfall forecasts for the summer monsoon season in the Yangtze River basin(YRB) allow decision-makers to plan for possible flooding, which can affect the lives and livelihoods of millions of people. A trial climate s...Rainfall forecasts for the summer monsoon season in the Yangtze River basin(YRB) allow decision-makers to plan for possible flooding, which can affect the lives and livelihoods of millions of people. A trial climate service was developed in 2016, producing a prototype seasonal forecast product for use by stakeholders in the region, based on rainfall forecasts directly from a dynamical model. Here, we describe an improved service based on a simple statistical downscaling approach. Through using dynamical forecast of an East Asian summer monsoon(EASM) index, seasonal mean rainfall for the upper and middle/lower reaches of YRB can be forecast separately by use of the statistical downscaling, with significant skills for lead times of up to at least three months. The skill in different sub-basin regions of YRB varies with the target season. The rainfall forecast skill in the middle/lower reaches of YRB is significant in May–June–July(MJJ), and the forecast skill for rainfall in the upper reaches of YRB is significant in June–July–August(JJA). The mean rainfall for the basin as a whole can be skillfully forecast in both MJJ and JJA. The forecasts issued in 2019 gave good guidance for the enhanced rainfall in the MJJ period and the near-average conditions in JJA. Initial feedback from users in the basin suggests that the improved forecasts better meet their needs and will enable more robust decision-making.展开更多
Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected globa...Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected global vegetation greening.However,a vegetation greenness increase does not mean that ecosystem functions increase.The intricate interplays resulting from the relationships between vegetation and precipitation must be more adequately comprehended.In this study,satellite data,for example,leaf area index(LAI),net primary production(NPP),and rainfall use efficiency(RUE),were used to quantify vegetation dynamics and their relationship with rainfall in different reaches of the Yellow River Basin(YRB).A sequential regression method was used to detect trends of NPP sensitivity to rainfall.The results showed that 34.53%of the YRB exhibited a significant greening trend since 2000.Among them,20.54%,53.37%,and 16.73%of upper,middle,and lower reach areas showed a significant positive trend,respectively.NPP showed a similar trend to LAI in the YRB upper,middle,and lower reaches.A notable difference was noted in the distributions and trends of RUE across the upper,middle,and lower reaches.Moreover,there were significant trends in vegetation-rainfall sensitivity in 16.86%of the YRB’s middle reaches—14.08%showed negative trends and 2.78%positive trends.A total of 8.41%of the YRB exhibited a marked increase in LAI,NPP,and RUE.Subsequently,strategic locations reliant on the correlation between vegetation and rainfall were identified and designated for restoration planning purposes to propose future ecological restoration efforts.Our analysis indicates that the middle reach of the YRB exhibited the most significant variation in vegetation greenness and productivity.The present study underscores the significance of examining the correlation between vegetation and rainfall within the context of the high-quality development strategy of the YRB.The outcomes of our analysis and the proposed ecological restoration framework can provide decision-makers with valuable insights for executing rational basin pattern optimization and sustainable management.展开更多
Using the US Climate Prediction Center (CPC) soil moisture dataset and the observed precipitation over China together with the NCEP/NCAR reanalysis wind and air temperature, the relationship between June precipitati...Using the US Climate Prediction Center (CPC) soil moisture dataset and the observed precipitation over China together with the NCEP/NCAR reanalysis wind and air temperature, the relationship between June precipitation over mid-lower reaches of the Yangtze River basin (MLR-YRB) and spring soil moisture over the East Asian monsoon region was explored, with the signal of the ENSO effect on precipitation removed. A significant positive correlation was found between the mean June precipitation and the preceding soil moisture over the MRL-YRB. The possible response mechanism for this relationship was also investigated. It is found that when the soil over the MRL-YRB is wetter (drier) than normal in April and May, the air temperature in the lower troposphere over this region in May is lower (higher) than normal, and this temperature effect leads to a decrease (increase) in the temperature contrast between the land and the sea. Generally, a decrease (increase) in the land-sea temperature contrast leads to weaker (stronger) East Asian summer monsoon in June. Southerly (northerly) wind anomalies at 850 hPa then show up in the south of the Yangtze River basin while northerly (southerly) wind anomalies dominate in the north. These anomalies lead to the convergence (divergence) of wind and water vapor and hence gives rise to more (less) precipitation in June over the MLR-YRB.展开更多
基金This work was supported by the National Key Program for Developing Basic Research (Grant No. 2004CB418303)the National Natural Science Foundation of China (Grant No. 40175018).
文摘The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific.
基金the Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0602401)the National Natural Science Foundation of China (Grant No. 41875106)
文摘It is generally agreed that El Nino can be classified into East Pacific(EP)and Central Pacific(CP)types.Nevertheless,little is known about the relationship between these two types of El Ni?o and land surface climate elements.This study investigates the linkage between EP/CP El Ni?o and summer streamflow over the Yellow and Yangtze River basins and their possible mechanisms.Over the Yellow River basin,the anomalous streamflow always manifests as positive(negative)in EP(CP)years,with a correlation coefficient of 0.39(-0.37);while over the Yangtze River basin,the anomalous streamflow shows as positive in both EP and CP years,with correlation coefficients of 0.72 and 0.48,respectively.Analyses of the surface hydrological cycle indicate that the streamflow is more influenced by local evapotranspiration(ET)than precipitation over the Yellow River basin,while it is dominantly affected by precipitation over the Yangtze River basin.The different features over these two river basins can be explained by the anomalous atmospheric circulation,which is cyclonic(anticyclonic)north(south)of 30°N over East Asia.EP years are dominated by two anticyclones,which bring strong water vapor convergence and induce more precipitation but less ET,and subsequently increase streamflow and flooding risks.In CP years,especially over the Yellow River basin,two cyclones dominate and lead to water vapor divergence and reduce moisture arriving.Meanwhile,the ET enhances mainly due to local high surface air temperature,which further evaporates water from the soil.As a result,the streamflow decreases,which will then increase the drought risk.
基金supported by the UK–China ResearchInnovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund
文摘We demonstrate that there is significant skill in the GloSea5 operational seasonal forecasting system for predicting June mean rainfall in the middle/lower Yangtze River basin up to four months in advance.Much of the rainfall in this region during June is contributed by the mei-yu rain band.We find that similar skill exists for predicting the East Asian summer monsoon index(EASMI)on monthly time scales,and that the latter could be used as a proxy to predict the regional rainfall.However,there appears to be little to be gained from using the predicted EASMI as a proxy for regional rainfall on monthly time scales compared with predicting the rainfall directly.Although interannual variability of the June mean rainfall is affected by synoptic and intraseasonal variations,which may be inherently unpredictable on the seasonal forecasting time scale,the major influence of equatorial Pacific sea surface temperatures from the preceding winter on the June mean rainfall is captured by the model through their influence on the western North Pacific subtropical high.The ability to predict the June mean rainfall in the middle and lower Yangtze River basin at a lead time of up to 4 months suggests the potential for providing early information to contingency planners on the availability of water during the summer season.
基金jointly supported by the National Basic Research Program of China [973 Program,grant number2015CB954102]the National Natural Science Foundation of China [grant number 41475043]
文摘The Yangtze–Huai River Basin(YHRB)always suffers from anomalously heavy rainfall during the warm season,and has been well explored as a whole area during the past several decades.In this study,the YHRB is divided into two core regions-the northern YHRB(nYHRB)and southern YHRB(sYHRB)-based on 29-year(1979–2007)June–July–August(JJA)temporally averaged daily rainfall rates and the standard deviation of rainfall.A spectral analysis of JJA daily rainfall data over these 29 years reveals that a 3–7-day synoptic-timescale high-frequency mode is absolutely dominant over the nYHRB,with 10–20-day and 15–40-day modes playing a secondary role.By contrast,3–7-day and 10–20-day modes are both significant over the sYHRB,with 7–14-day,15–40-day,and 20–60-day modes playing secondary roles.Based on a comparison between bandpass-filtered rainfall anomalies and original rainfall series,a total of 42,1,5,and 3 heavy rainfall events(daily rainfall amounts in the top 5%of rainy days)are detected over the nYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 15–40-day variation disturbances.Meanwhile,a total of 28,8,12,and 6 heavy rainfall events are detected over the sYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 20–60-day variation disturbances.The results have important implications for understanding the duration of summer heavy rainfall events over both regions.
基金Supported by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund。
文摘Rainfall forecasts for the summer monsoon season in the Yangtze River basin(YRB) allow decision-makers to plan for possible flooding, which can affect the lives and livelihoods of millions of people. A trial climate service was developed in 2016, producing a prototype seasonal forecast product for use by stakeholders in the region, based on rainfall forecasts directly from a dynamical model. Here, we describe an improved service based on a simple statistical downscaling approach. Through using dynamical forecast of an East Asian summer monsoon(EASM) index, seasonal mean rainfall for the upper and middle/lower reaches of YRB can be forecast separately by use of the statistical downscaling, with significant skills for lead times of up to at least three months. The skill in different sub-basin regions of YRB varies with the target season. The rainfall forecast skill in the middle/lower reaches of YRB is significant in May–June–July(MJJ), and the forecast skill for rainfall in the upper reaches of YRB is significant in June–July–August(JJA). The mean rainfall for the basin as a whole can be skillfully forecast in both MJJ and JJA. The forecasts issued in 2019 gave good guidance for the enhanced rainfall in the MJJ period and the near-average conditions in JJA. Initial feedback from users in the basin suggests that the improved forecasts better meet their needs and will enable more robust decision-making.
基金supported by the Fundamental Research Funds for the Central Universities (QNTD202303)the National Natural Science Foundation of China (42177310 and 42377331)+1 种基金the National Key Research and Development Program (2022YFF1300803)Yang Yu received the Outstanding Chinese and Foreign Youth Exchange Program supported by China Association for Science and Technology (2020-2022).
文摘Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected global vegetation greening.However,a vegetation greenness increase does not mean that ecosystem functions increase.The intricate interplays resulting from the relationships between vegetation and precipitation must be more adequately comprehended.In this study,satellite data,for example,leaf area index(LAI),net primary production(NPP),and rainfall use efficiency(RUE),were used to quantify vegetation dynamics and their relationship with rainfall in different reaches of the Yellow River Basin(YRB).A sequential regression method was used to detect trends of NPP sensitivity to rainfall.The results showed that 34.53%of the YRB exhibited a significant greening trend since 2000.Among them,20.54%,53.37%,and 16.73%of upper,middle,and lower reach areas showed a significant positive trend,respectively.NPP showed a similar trend to LAI in the YRB upper,middle,and lower reaches.A notable difference was noted in the distributions and trends of RUE across the upper,middle,and lower reaches.Moreover,there were significant trends in vegetation-rainfall sensitivity in 16.86%of the YRB’s middle reaches—14.08%showed negative trends and 2.78%positive trends.A total of 8.41%of the YRB exhibited a marked increase in LAI,NPP,and RUE.Subsequently,strategic locations reliant on the correlation between vegetation and rainfall were identified and designated for restoration planning purposes to propose future ecological restoration efforts.Our analysis indicates that the middle reach of the YRB exhibited the most significant variation in vegetation greenness and productivity.The present study underscores the significance of examining the correlation between vegetation and rainfall within the context of the high-quality development strategy of the YRB.The outcomes of our analysis and the proposed ecological restoration framework can provide decision-makers with valuable insights for executing rational basin pattern optimization and sustainable management.
基金Supported by the National Basic Research Program of China(2009CB421406)Special Public Welfare Research Fund for Meteorological Profession of China Meteorological Administration(GYHY200906016)+1 种基金National Science and Technology Support Program of China(2007BAC29B03)National Natural Science Foundation of China(40821092)
文摘Using the US Climate Prediction Center (CPC) soil moisture dataset and the observed precipitation over China together with the NCEP/NCAR reanalysis wind and air temperature, the relationship between June precipitation over mid-lower reaches of the Yangtze River basin (MLR-YRB) and spring soil moisture over the East Asian monsoon region was explored, with the signal of the ENSO effect on precipitation removed. A significant positive correlation was found between the mean June precipitation and the preceding soil moisture over the MRL-YRB. The possible response mechanism for this relationship was also investigated. It is found that when the soil over the MRL-YRB is wetter (drier) than normal in April and May, the air temperature in the lower troposphere over this region in May is lower (higher) than normal, and this temperature effect leads to a decrease (increase) in the temperature contrast between the land and the sea. Generally, a decrease (increase) in the land-sea temperature contrast leads to weaker (stronger) East Asian summer monsoon in June. Southerly (northerly) wind anomalies at 850 hPa then show up in the south of the Yangtze River basin while northerly (southerly) wind anomalies dominate in the north. These anomalies lead to the convergence (divergence) of wind and water vapor and hence gives rise to more (less) precipitation in June over the MLR-YRB.