The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the ground...The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the groundwater level. The relationship among the calculation error of groundwater level, the pumping rate, the limit of iteration convergence error, the calculation time, and the aquifer parameters were discussed by using an ideal model. Finally, the water yield of Dianzi iron mine was predicted using the testified numerical model. It is indicated that the calculation error of groundwater level is related to the limit of iteration convergence error, the calculation time and the aquifer parameters, but not to the pumping rate and the variation of groundwater level.展开更多
The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating sp...The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level. A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed, especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope. Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated. The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.展开更多
文摘The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the groundwater level. The relationship among the calculation error of groundwater level, the pumping rate, the limit of iteration convergence error, the calculation time, and the aquifer parameters were discussed by using an ideal model. Finally, the water yield of Dianzi iron mine was predicted using the testified numerical model. It is indicated that the calculation error of groundwater level is related to the limit of iteration convergence error, the calculation time and the aquifer parameters, but not to the pumping rate and the variation of groundwater level.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10372104) the Special Funds for the Major State Basic Research Project (Grant No. 2002CB412706)+1 种基金 the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-SW-L1-2) the Special Research Project for Landslide and Bank-collapse in The Three Gorges Reservoir Areas (Grant No. 4-5).
文摘The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level. A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed, especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope. Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated. The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.