期刊文献+
共找到417篇文章
< 1 2 21 >
每页显示 20 50 100
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
1
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
2
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS PROPER TOTAL COLORING vertex-distinguishing TOTAL COLORING vertex-distinguishing TOTAL chromatic number
下载PDF
An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph 被引量:15
3
作者 Xin-sheng Liu Ming-qiang An Yang Gao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期137-140,共4页
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ... A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△. 展开更多
关键词 adjacent strong edge coloring adjacent vertex distinguishing acyclic edge coloring adjacent vertexdistinguishing acyclic edge chromatic number the LovNsz local lemma
原文传递
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
4
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
一类仙人掌图的D(2)-点可区别全染色
5
作者 汪银芳 李沐春 王国兴 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期1-6,共6页
用数学归纳法和组合分析法给出最大度为3的仙人掌图G T的D(2)-点可区别全染色,进而得到χ_(2vt)(G T)≤6.结果表明,D(β)-VDTC猜想对最大度为3的仙人掌图成立.
关键词 仙人掌图 D(2)-点可区别全染色 D(2)-点可区别全色数
下载PDF
Vertex-distinguishing E-total Coloring of Complete Bipartite Graph K 7,n when7≤n≤95 被引量:14
6
作者 chen xiang-en du xian-kun 《Communications in Mathematical Research》 CSCD 2016年第4期359-374,共16页
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints.... Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained. 展开更多
关键词 GRAPH complete bipartite graph E-total coloring vertex-distinguishingE-total coloring vertex-distinguishing E-total chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Cycles and Wheels 被引量:4
7
作者 CHEN XIANG-EN HE WEN-YU +2 位作者 LI ZE-PENG YAO BING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2014年第3期222-236,共15页
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i... Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper. 展开更多
关键词 GRAPH IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Vertex-distinguishing VE-total Colorings of Cycles and Complete Graphs 被引量:5
8
作者 XIN Xiao-qing CHEN Xiang-en WANG Zhi-wen 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第1期92-97,共6页
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi... Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture. 展开更多
关键词 GRAPHS VE-total coloring vertex-distinguishing VE-total coloring vertexdistinguishing VE-total chromatic number
下载PDF
Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs 被引量:1
9
作者 Qian WANG Shuang Liang TIAN 《Journal of Mathematical Research and Exposition》 CSCD 2011年第2期366-370,共5页
An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors.We obtain the adjacent vertex distinguishing incidence ... An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors.We obtain the adjacent vertex distinguishing incidence chromatic number of the Cartesian product of a path and a path,a path and a wheel,a path and a fan,and a path and a star. 展开更多
关键词 Cartesian product incidence coloring adjacent vertex distinguishing incidence coloring adjacent vertex distinguishing incidence chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Complete Bipartite Graphs K8,n 被引量:3
10
作者 SHI Jin CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2016年第2期147-154,共8页
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte... Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained. 展开更多
关键词 complete bipartite graphs IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for P_m × P_n,P_m × C_n and C_m × C_n 被引量:1
11
作者 陈祥恩 张忠辅 孙宜蓉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期789-798,共10页
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E... Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)... 展开更多
关键词 total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
双圈图的D(2)-点可区别边染色 被引量:2
12
作者 贾秀卿 文飞 +1 位作者 李泽鹏 李沐春 《高校应用数学学报(A辑)》 北大核心 2023年第2期236-252,共17页
图G的一个正常k-边染色f满足对■u,v∈V(G),当d(u,v)≤2时都有S_(f)(u)≠S_(f)(v),其中S_(f)(v)={f(vw)|vw∈E(G)}表示顶点v的所有关联边上所染颜色构成的集合,则称f为图G的k-D(2)-点可区别边染色(简记为k-D(2)-VDEC),将其所需要颜色的... 图G的一个正常k-边染色f满足对■u,v∈V(G),当d(u,v)≤2时都有S_(f)(u)≠S_(f)(v),其中S_(f)(v)={f(vw)|vw∈E(G)}表示顶点v的所有关联边上所染颜色构成的集合,则称f为图G的k-D(2)-点可区别边染色(简记为k-D(2)-VDEC),将其所需要颜色的最小数k称为D(2)-点可区别边色数,简记为χ’_(2-vd)(G).结合Hall定理证明了最大度为△(G)的双圈图G都有χ’_(2-vd)(G)≤△(G)+2. 展开更多
关键词 双圈图 正常边染色 D(2)-点可区别边染色 D(2)-点可区别边色数
下载PDF
双圈图的邻点强可区别全染色
13
作者 周莉 文飞 李泽鹏 《数学杂志》 2023年第6期537-546,共10页
本文研究了双圈图的邻点强可区别全染色问题,并利用结构分析法给出了双圈图的邻点强可区别全色数的上界.即,当G是以∞-图为基图的双圈图时,则χ_(ast)(G)≤△(G)+2;其他χ_(ast)(G)≤△(G)+3.从而验证了张忠辅等提出的平面图的邻点强可... 本文研究了双圈图的邻点强可区别全染色问题,并利用结构分析法给出了双圈图的邻点强可区别全色数的上界.即,当G是以∞-图为基图的双圈图时,则χ_(ast)(G)≤△(G)+2;其他χ_(ast)(G)≤△(G)+3.从而验证了张忠辅等提出的平面图的邻点强可区别全染色猜想在双圈图上是成立的. 展开更多
关键词 双圈图 邻点强可区别全染色 邻点强可区别全色数
下载PDF
Vertex Distinguishing Equitable Total Chromatic Number of Join Graph 被引量:5
14
作者 Zhi-wen Wang Li-hong Yan Zhong-fuZhang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2007年第3期433-438,共6页
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any... A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn VPn, Cn VCn and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn V Pn and Cn ∨ Cn. 展开更多
关键词 PATH CYCLE join graph vertex distinguishing equitable total chromatic number
原文传递
关于几类特殊图的Mycielski图的邻点可区别全色数(英文) 被引量:13
15
作者 陈祥恩 张忠辅 +1 位作者 晏静之 张贵仓 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期117-122,共6页
设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).... 设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设Xat(G)=min{k|G存在k-AVDTC},则称Xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数. 展开更多
关键词 全染色 邻点可区别全染色 邻点可区别全色数
下载PDF
若干联图的邻点可区别I-全染色 被引量:9
16
作者 张婷 朱恩强 +1 位作者 刘晓娜 赵双柱 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期267-272,共6页
利用函数构造法和数学归纳法,考虑图P_m∨S_n,F_m∨W_n和W_m∨W_n的邻点可区别I-全染色,给出了它们邻点可区别I-全色数.
关键词 联图 I-全染色 邻点可区别I-全染色 邻点可区别I-全色数
下载PDF
点不交的m个C_3的并的点可区别全染色 被引量:11
17
作者 辛小青 王治文 +1 位作者 陈祥恩 姚兵 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第2期251-257,共7页
利用μ(G)的定义确定了点不交的m个C3(m≥2)的并的点可区别全色数的下界,并借助矩阵给出了点不交的m个C3(m≥2)的并的点可区别全染色方法,进而确定了它的点可区别全色数.
关键词 点可区别全染色 点可区别全色数 点不交的并
下载PDF
mK_4的点可区别全染色 被引量:12
18
作者 陈祥恩 王治文 +1 位作者 马彦荣 姚兵 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第4期686-692,共7页
利用色集事先分配法,借助于矩阵构造具体染色及递归法的方法,研究图的点可区别全染色问题,给出了m个K4的点不交的并mK4的点可区别全色数χvt(mK4)的确切值,即"如果(k-1)4<4m≤(k)4,m≥2,k≥6,则χvt(mK4)=k".验证了VDTC猜... 利用色集事先分配法,借助于矩阵构造具体染色及递归法的方法,研究图的点可区别全染色问题,给出了m个K4的点不交的并mK4的点可区别全色数χvt(mK4)的确切值,即"如果(k-1)4<4m≤(k)4,m≥2,k≥6,则χvt(mK4)=k".验证了VDTC猜想对mK4成立. 展开更多
关键词 点可区别全染色 点可区别全色数
下载PDF
若干路的冠图的邻点可区别V-全染色 被引量:9
19
作者 李沐春 王双莉 +1 位作者 张伟东 王立丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期97-99,共3页
根据路与完全图(星、扇、轮、路、圈)构造的冠图的结构性质,应用分析和构造函数法研究了邻点可区别V-全染色,得到了路与完全图(星、扇、轮、路、圈)构造的冠图的邻点可区别V-全色数.
关键词 冠图 邻点可区别V-全染色 邻点可区别V-全色数
下载PDF
C_m·F_n的邻点可区别边色数 被引量:7
20
作者 李敬文 刘君 +3 位作者 包世堂 任志国 赵传成 张忠辅 《兰州交通大学学报》 CAS 2004年第4期128-130,共3页
Fn表示阶为n+1的扇,当m个Fn的扇心连成圈时,用Cm·Fn表示.设Cm=u1u2…unv1,V(Cm·Fn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm·Fn)=E(Cm)∪{uivij|i=1,2,…,m;j=1,2,…,n}∪{vijvi(j+1)|i=1,2,…,m;j=1,2,…,n... Fn表示阶为n+1的扇,当m个Fn的扇心连成圈时,用Cm·Fn表示.设Cm=u1u2…unv1,V(Cm·Fn)={ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Cm·Fn)=E(Cm)∪{uivij|i=1,2,…,m;j=1,2,…,n}∪{vijvi(j+1)|i=1,2,…,m;j=1,2,…,n-1}.研究Cm·Fn的邻点可区别的边色数. 展开更多
关键词 邻点可区别的边色数
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部