Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of con...Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of controversy.This study delves into the formation of polarons in different crystalline forms of TiO_(2)and their connection with the materials'structure.By employing density functional theory calculations with on-site Coulomb interaction correction(DFT+U),we provide a detailed analysis of the electronic polarization behavior in the anatase and rutile forms of TiO_(2).We focus on the polarization properties of defect-induced and photoexcited excess electrons on various TiO_(2)surfaces.The results reveal that the defect electrons can form small polarons on the anatase TiO_(2)(101)surface,while on the rutile TiO_(2)(110)surface,both small and large polarons(hybrid-state polarons)are formed.Photoexcited electrons are capable of forming both small and large polarons on the surfaces of both crystal types.The analysis indicates that the differences in polaron distribution are primarily determined by the intrinsic properties of the crystals;the structural and symmetry differences between anatase and rutile TiO_(2)lead to the distinct polaron behaviors.Further investigation suggests that the polarization behavior of defect electrons is also related to the arrangement of electron orbitals around the Ti atoms,while the polarization of photoexcited electrons is mainly facilitated by the lattice distortions.These findings elucidate the formation mechanisms of different types of polarons and may contribute to understanding the performance of TiO_(2)in different fields.展开更多
Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise ...Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.展开更多
Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant ...Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi...Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 ...Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 meteorological stations in Wuyi Mountains and its adjacent regions to analyze the spatio-temporal patterns of temperature change.The results show that Wuyi Mountains have experienced significant warming from 1961 to 2018.The warming trend of the mean temperature is 0.20℃/decade,the maximum temperature is 0.17℃/decade,and the minimum temperature is 0.26℃/decade.In 1961-1990,more than 63%of the stations showed a decreasing trend in annual mean temperature,mainly because the maximum temperature decreased during this period.However,in 1971-2000,1981-2010 and 1991-2018,the maximum,minimum and mean temperatures increased.The fastest increasing trend of mean temperature occurred in the southeastern coastal plains,the quickest increasing trend of maximum temperature occurred in the northwestern mountainous region,and the increase of minimum temperature occurred faster in the southeastern coastal and northwestern mountainous regions than that in the central area.Meanwhile,this study suggests that elevation does not affect warming in the Wuyi Mountains.These results are beneficial for understanding climate change in humid subtropical middle and low mountains.展开更多
Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic e...Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic environment.Natural and anthropogenic changes in ground cover are important factors affecting the absorption of solar radiation at the ground surface.This phenomenon is particularly pronounced in the mid and high latitudes.In order to quantify the inf luence of surface cover change on the absorption of solar radiation at the surface and to provide a scientific basis for changes in the climatic environment,this paper analyzed ground cover change,ground absorbed solar radiation change and the effect of ground cover change on ground absorbed solar radiation in the Three Northeastern Provinces of China from 2001 to 2018.Materials and methods In this study,the Three Northeastern Provinces of China were used as the study area.Firstly,satellite remote sensing data were used to obtain land cover data and albedo data for Aug.1st of each year in 2001,2005,2010,2015 and 2018.The albedo data were further used to calculate the absorbed solar radiation data at the ground surface.Next,the land cover data were used to count the area changes and shifts of different land classes over the five-year period.The land cover data were overlaid with the surface absorbed solar radiation data to obtain the mean and standard deviation of radiation absorption for different ground classes.The surface absorbed solar radiation data were subtracted to obtain the changes in surface absorbed solar radiation for 2001-2005,2005-2010,2010-2015 and 2015-2018.Ultimately,we used a combination of shifted changes in ground classes and changes in surface absorbed solar radiation data,with unchanged ground classes as a baseline and data such as slope orientation as an aid.We analyzed the effect of ground cover change on surface absorbed solar radiation at regional and pixel point scales.Results(1)The area of woodland and waters in the Three Northeastern Provinces of China increased and then decreased from 2001 to 2018,with an overall increase of 3.96%and 10.51%respectively.Cropland decreased and then increased,with a total decrease of 1.22%.Grassland continued to decrease,with an overall decrease of 19.36%.Building sites increased all the time,with a total increase of 11.08%.The main types of ground cover shifted were woodland,cropland and grassland.The main factors for the change in ground cover were China’s woodland protection policy and the saturation of the total woodland stock.(2)The five ground types absorb solar radiation in the order of waters>building sites>woodland>grassland>cropland.The surface absorption of solar radiation in the Songnen Plain,the Sanjiang Plain and the Songhua River Basin flowing through the Songnen Plain and the Sanjiang Plain varies significantly,by more than 25 W·m^(-2).(3)Changes in the ground cover type affected the absorption of solar radiation energy by the ground surface.There was a clear trend of interconversion between waters and cropland/grassland,cropland and woodland/grassland.In particular,the conversion of waters to both cropland and grassland radiation absorption values decreased significantly,while the opposite increased.The absolute difference between waters and cropland was a maximum of -156.66 W·m^(-2)in 2010-2015,and between waters and grassland was a maximum of 102.36 W·m^(-2) in 2005-2010.The radiative absorption values of woodland and grassland reclamation declined and conversely increased.The absolute difference between woodland and cropland was a maximum of-13.94 W·m^(-2) in 2010-2015 when woodland converted to cropland,and between grassland and cropland was a maximum of 22.36 W·m^(-2) in 2001-2005 when cropland converted to grassland,respectively.Discussion Ground cover changes in the Three Northeastern Provinces of China from 2001-2018 were inextricably linked to natural factors and the inf luence of Chinese national policies.The main inf luencing factors were China’s woodland protection policy,restoration of woodland fire sites,saturation of total woodland,optimization of cropland patterns,sanding of grassland,expansion of water conservancy projects,and urbanization expansion.There were differences in the radiation absorption characteristics of different ground cover types.This was due to the nature of the ground type itself and the regional environment.When ground cover types changed,their ability to absorb solar radiation also changed.The degree of change could be inf luenced by different ground types and different environmental factors.Different spatial scales can also produce variability.We need to consider the effects of ground cover change on the absorption of solar radiation at the surface in an integrated and comprehensive way.Conclusions The Three Northeastern Provinces of China had frequent changes in ground cover from 2001-2018,with the area of grassland decreased by almost 20%.These changes were due to natural environmental change and policies issued by China since the 21st century.The extent to which solar radiation was absorbed by different ground cover types was different,with grassland being the strongest and cropland the least.In the past few years,the Songnen Plain and Sanjiang Plain regions were the most significant changes in the absorption of solar radiation by the ground cover.The change in ground cover type led to a change in solar radiation absorption at the ground surface,with the conversion of waters to cropland or grassland and the conversion of cropland to woodland or grassland showing the greatest change in radiation absorption values,and vice versa.Of these,the absolute difference in the conversion of waters to cropland amounts to-156.66 W·m^(-2) in 2010-2015.The variation in the absorption of solar radiation at the ground surface was related to the characteristics of the ground class itself,but was also limited by the regional environment.Recommendations and perspectives This study showed that surface cover change can affect the absorption of solar radiation at the surface to varying degrees.The unchanged land classes were used as a comparative analysis in this paper,and it was clear from the paper that some of the unchanged land classes showed significant changes in radiation absorption that should be of interest in future studies.展开更多
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s...Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.展开更多
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j...Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.展开更多
Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land ...Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities.展开更多
This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse ...This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse education researchers, selected using convenience sampling, with five or more years of nursing experience and experience teaching novice nurses, were invited to an expert meeting in July 2015. A group interview was conducted that lasted approximately 120 minutes. Study 2 examined the content validity index. Between September and November 2015, we distributed a self-administered questionnaire survey to 11 participants selected by convenience sampling. The participants included five nurse education researchers with a minimum of five years of nursing experience and experience teaching novice nurses, as well as six clinical nurses with a master’s degree or higher. Finally, 81 questionnaire items were retained from the initial 125 items. The 81-item Mentoring Function Scale for Novice Nurses had higher content validity than the original scale. To further increase the scale’s applicability, future studies should assess its reliability, construct validity, and criterion-related validity.展开更多
To reveal the changing trend and annual distribution of the surface water hydrology and the local climate in the Bayanbuluk alpine-cold wetlands in the past 50 years, we used temperature, precipitation, different rank...To reveal the changing trend and annual distribution of the surface water hydrology and the local climate in the Bayanbuluk alpine-cold wetlands in the past 50 years, we used temperature, precipitation, different rank precipitation days, evaporation, water vapor pressure, relative humidity, dust storm days and snow depth to analyze their temporal variations. We conclude that there were no distinct changes in annual mean temperature, and no obvious changes in the maximum or minimum temperatures. Precipitation in warm season was the main water source in the wetlands of the study area and accounted for 92.0% of the annual total. Precipitation dropped to the lowest in the mid-1980s in the past 50 years and then increased gradually. The runoff of the Kaidu River has increased since 1987 which has a good linear response to the annual precipitation and mean temperature in Bayanbuluk alpine-cold wetland. Climate change also affected ecosystems in this area due to its direct relations to the surface water environment.展开更多
The diurnal surface temperature range (DTR) has become significantly smaller over the Tibetan Plateau (TP) but larger in southeastern China, despite the daily mean surface temperature having increased steadily in ...The diurnal surface temperature range (DTR) has become significantly smaller over the Tibetan Plateau (TP) but larger in southeastern China, despite the daily mean surface temperature having increased steadily in both areas during recent decades. Based on ERA-Interim reanalysis data covering 1979-2012, this study shows that the weakened DTR over TP is caused by stronger warming of daily minimum surface temperature (Tmin) and a weak cooling of the daily maximum surface temper- ature (Tmax); meanwhile, the enhanced DTR over southeastern China is mainly associated with a relatively stronger/weaker warming of Tmax/Tmin. A further quantitative analysis of DTR changes through a process-based decomposition method-- the Coupled Surface-Atmosphere Climate Feedback Response Analysis Method (CFRAM)--indicates that changes in radia- tive processes are mainly responsible for the decreased DTR over the TR In particular, the increased low-level cloud cover tends to induce the radiative cooling/warming during daytime/nighttime, and the increased water vapor helps to decrease the DTR through the stronger radiative wanning during nighttime than daytime. Contributions from the changes in all radiative processes (over -2℃) are compensated for by those from the stronger decreased surface sensible heat flux during daytime than during nighttime (approximately 2.5℃), but are co-contributed by the changes in atmospheric dynamics (approximately -0.4℃) and the stronger increased latent heat flux during daytime (approximately -0.8℃). In contrast, the increased DTR over southeastern China is mainly contributed by the changes in cloud, water vapor and atmospheric dynamics. The changes in surface heat fluxes have resulted in a decrease in DTR over southeastern China.展开更多
Due to large deserts on Earth surface a thorough understanding of climate change, landscape evolution and geomorphological processes having occurred in deserts is crucial for Earth System Science. The landscapes in de...Due to large deserts on Earth surface a thorough understanding of climate change, landscape evolution and geomorphological processes having occurred in deserts is crucial for Earth System Science. The landscapes in deserts are, however, diverse and different over the globe with regard to their geomorphological nature, human activities and geological histories. In the last decades a great number of efforts have been put to the investigation of the initial timing of the occurrence of arid climate, e. g. in northwestern China. Silty sediments in the downwind directions have been used to deduce the histories of deserts. In general, there is a lack of knowledge about processes and landscapes in Chinese drylands between the initial Miocene silt sedimentation at desert margins and the late Quaternary multiple occurrences of wetter climate with assumed large lakes in many of the deserts in northern China. The geomorphological concept of three primary triggering factors, i.e., the sediment supply, sediment availability and transport capacity of wind, and additionally the underground geology need to be fully considered for a better understanding of the environmental histories of sand seas which should not be viewed as equivalent for deserts because sand seas cover between 〈 1% and ca. 45% of the desert areas in various continents dependent on a complex interaction between various processes of both exogenous and endogenous origins.展开更多
Remote sensing and geographic information systems (GIS) technologies were used to detect land use/cover changes (LUCC) and to assess their impacts on land surface temperature (LST) in the Zhujiang Delta. Multi-tempora...Remote sensing and geographic information systems (GIS) technologies were used to detect land use/cover changes (LUCC) and to assess their impacts on land surface temperature (LST) in the Zhujiang Delta. Multi-temporal Landsat TM and Landsat ETM+ data were employed to identify patterns of LUCC as well as to quantify urban expansion and the associated decrease of vegetation cover. The thermal infrared bands of the data were used to retrieve LST. The results revealed a strong and uneven urban growth,which caused LST to raise 4.56℃in the newly urbanized part of the study area. Overall, remote sensing and GIS technologies were effective approaches for monitoring and analyzing urban growth patterns and evaluating their impacts on LST.展开更多
The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced ...The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced with graphene oxide(GO) and reduced graphene oxide(RGO) to investigate this influence of functional groups. RGO sheets were fabricated by solvent thermal reduction in DMF medium. UV-Vis, FT-IR and XPS analyses indicate the difference of oxygen-containing groups on GO and RGO sheets surface. The observation of SEM illustrates that the addition of a smaller number of GO or RGO sheets causes a fine cellular structure of PMMA foams with a higher cell density(about 1011 cells/cm3) and smaller cell sizes(about 1-2 μm) owing to their remarkable heterogeneous nucleation effect. Compared to GO reinforced foams, the RGO/PMMA foams own lower cell density and bigger cell size in their microstructure, and their compressive strength is lower even when the reinforcement contents are the same and the foam bulk density is higher. These results indicate that the oxygen-containing groups on GO sheets’ surface are beneficial to adhere CO2 to realize a larger nucleation rate, and their strong interaction with PMMA matrix improves the mechanical property of PMMA foams.展开更多
In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micr...In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient.展开更多
This study investigated the temporal and spatial changes of land surface temperature (LST) over Calabar Metropolis, Nigeria (2002 to 2016). The LST over Calabar metropolis was studied from the analysis of Landsat imag...This study investigated the temporal and spatial changes of land surface temperature (LST) over Calabar Metropolis, Nigeria (2002 to 2016). The LST over Calabar metropolis was studied from the analysis of Landsat imageries of the investigated years (2002, 2006, 2008, 2010, 2012, 2014 and 2016). The results of the LST imagery were classified using standard deviation. GIS was further applied to extract the coverage ratio of each land use in the context of Land surface temperature (LST) pixels and results were presented in degree Celsius. The result of this study revealed a great variation in the mean LST for the selected period. The highest mean LST of 25.38°C was observed in 2016, followed by 2002 with mean LST of 25.32°C whereas, the least LST was observed in 2010. This study has shown that, the changing land use pattern of the area is capable of affecting certain characteristics of the environment such as surface temperature. The study recommends that effort should be made by the government to increase urban vegetation in order to reduce potential future increased in LST.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
文摘Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of controversy.This study delves into the formation of polarons in different crystalline forms of TiO_(2)and their connection with the materials'structure.By employing density functional theory calculations with on-site Coulomb interaction correction(DFT+U),we provide a detailed analysis of the electronic polarization behavior in the anatase and rutile forms of TiO_(2).We focus on the polarization properties of defect-induced and photoexcited excess electrons on various TiO_(2)surfaces.The results reveal that the defect electrons can form small polarons on the anatase TiO_(2)(101)surface,while on the rutile TiO_(2)(110)surface,both small and large polarons(hybrid-state polarons)are formed.Photoexcited electrons are capable of forming both small and large polarons on the surfaces of both crystal types.The analysis indicates that the differences in polaron distribution are primarily determined by the intrinsic properties of the crystals;the structural and symmetry differences between anatase and rutile TiO_(2)lead to the distinct polaron behaviors.Further investigation suggests that the polarization behavior of defect electrons is also related to the arrangement of electron orbitals around the Ti atoms,while the polarization of photoexcited electrons is mainly facilitated by the lattice distortions.These findings elucidate the formation mechanisms of different types of polarons and may contribute to understanding the performance of TiO_(2)in different fields.
文摘Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.
基金supported by the National Key Research and Development Plan of China(No.2021YFE0114700)National Natural Science Foundation of China(No.52377145).
文摘Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
基金the European Research Council starting grant “Cell Hybridge” for financial support under the Horizon2020 framework program (Grant#637308)the Province of Limburg for support and funding
文摘Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
基金supported by the Projects for National Natural Science Foundation of China(U22A20554)the Natural Science Foundation of Fujian Province(2023J01285)+1 种基金the Public Welfare Scientific Institutions of Fujian Province(2022R1002005)the Scientific Project from Fujian Provincial Department of Science and Technology(2022Y0007).
文摘Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 meteorological stations in Wuyi Mountains and its adjacent regions to analyze the spatio-temporal patterns of temperature change.The results show that Wuyi Mountains have experienced significant warming from 1961 to 2018.The warming trend of the mean temperature is 0.20℃/decade,the maximum temperature is 0.17℃/decade,and the minimum temperature is 0.26℃/decade.In 1961-1990,more than 63%of the stations showed a decreasing trend in annual mean temperature,mainly because the maximum temperature decreased during this period.However,in 1971-2000,1981-2010 and 1991-2018,the maximum,minimum and mean temperatures increased.The fastest increasing trend of mean temperature occurred in the southeastern coastal plains,the quickest increasing trend of maximum temperature occurred in the northwestern mountainous region,and the increase of minimum temperature occurred faster in the southeastern coastal and northwestern mountainous regions than that in the central area.Meanwhile,this study suggests that elevation does not affect warming in the Wuyi Mountains.These results are beneficial for understanding climate change in humid subtropical middle and low mountains.
文摘Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic environment.Natural and anthropogenic changes in ground cover are important factors affecting the absorption of solar radiation at the ground surface.This phenomenon is particularly pronounced in the mid and high latitudes.In order to quantify the inf luence of surface cover change on the absorption of solar radiation at the surface and to provide a scientific basis for changes in the climatic environment,this paper analyzed ground cover change,ground absorbed solar radiation change and the effect of ground cover change on ground absorbed solar radiation in the Three Northeastern Provinces of China from 2001 to 2018.Materials and methods In this study,the Three Northeastern Provinces of China were used as the study area.Firstly,satellite remote sensing data were used to obtain land cover data and albedo data for Aug.1st of each year in 2001,2005,2010,2015 and 2018.The albedo data were further used to calculate the absorbed solar radiation data at the ground surface.Next,the land cover data were used to count the area changes and shifts of different land classes over the five-year period.The land cover data were overlaid with the surface absorbed solar radiation data to obtain the mean and standard deviation of radiation absorption for different ground classes.The surface absorbed solar radiation data were subtracted to obtain the changes in surface absorbed solar radiation for 2001-2005,2005-2010,2010-2015 and 2015-2018.Ultimately,we used a combination of shifted changes in ground classes and changes in surface absorbed solar radiation data,with unchanged ground classes as a baseline and data such as slope orientation as an aid.We analyzed the effect of ground cover change on surface absorbed solar radiation at regional and pixel point scales.Results(1)The area of woodland and waters in the Three Northeastern Provinces of China increased and then decreased from 2001 to 2018,with an overall increase of 3.96%and 10.51%respectively.Cropland decreased and then increased,with a total decrease of 1.22%.Grassland continued to decrease,with an overall decrease of 19.36%.Building sites increased all the time,with a total increase of 11.08%.The main types of ground cover shifted were woodland,cropland and grassland.The main factors for the change in ground cover were China’s woodland protection policy and the saturation of the total woodland stock.(2)The five ground types absorb solar radiation in the order of waters>building sites>woodland>grassland>cropland.The surface absorption of solar radiation in the Songnen Plain,the Sanjiang Plain and the Songhua River Basin flowing through the Songnen Plain and the Sanjiang Plain varies significantly,by more than 25 W·m^(-2).(3)Changes in the ground cover type affected the absorption of solar radiation energy by the ground surface.There was a clear trend of interconversion between waters and cropland/grassland,cropland and woodland/grassland.In particular,the conversion of waters to both cropland and grassland radiation absorption values decreased significantly,while the opposite increased.The absolute difference between waters and cropland was a maximum of -156.66 W·m^(-2)in 2010-2015,and between waters and grassland was a maximum of 102.36 W·m^(-2) in 2005-2010.The radiative absorption values of woodland and grassland reclamation declined and conversely increased.The absolute difference between woodland and cropland was a maximum of-13.94 W·m^(-2) in 2010-2015 when woodland converted to cropland,and between grassland and cropland was a maximum of 22.36 W·m^(-2) in 2001-2005 when cropland converted to grassland,respectively.Discussion Ground cover changes in the Three Northeastern Provinces of China from 2001-2018 were inextricably linked to natural factors and the inf luence of Chinese national policies.The main inf luencing factors were China’s woodland protection policy,restoration of woodland fire sites,saturation of total woodland,optimization of cropland patterns,sanding of grassland,expansion of water conservancy projects,and urbanization expansion.There were differences in the radiation absorption characteristics of different ground cover types.This was due to the nature of the ground type itself and the regional environment.When ground cover types changed,their ability to absorb solar radiation also changed.The degree of change could be inf luenced by different ground types and different environmental factors.Different spatial scales can also produce variability.We need to consider the effects of ground cover change on the absorption of solar radiation at the surface in an integrated and comprehensive way.Conclusions The Three Northeastern Provinces of China had frequent changes in ground cover from 2001-2018,with the area of grassland decreased by almost 20%.These changes were due to natural environmental change and policies issued by China since the 21st century.The extent to which solar radiation was absorbed by different ground cover types was different,with grassland being the strongest and cropland the least.In the past few years,the Songnen Plain and Sanjiang Plain regions were the most significant changes in the absorption of solar radiation by the ground cover.The change in ground cover type led to a change in solar radiation absorption at the ground surface,with the conversion of waters to cropland or grassland and the conversion of cropland to woodland or grassland showing the greatest change in radiation absorption values,and vice versa.Of these,the absolute difference in the conversion of waters to cropland amounts to-156.66 W·m^(-2) in 2010-2015.The variation in the absorption of solar radiation at the ground surface was related to the characteristics of the ground class itself,but was also limited by the regional environment.Recommendations and perspectives This study showed that surface cover change can affect the absorption of solar radiation at the surface to varying degrees.The unchanged land classes were used as a comparative analysis in this paper,and it was clear from the paper that some of the unchanged land classes showed significant changes in radiation absorption that should be of interest in future studies.
基金supported by is supported by the Shanghai Municipal Science and Technology Major Projectthe support from Shanghai Super Postdoctoral Incentive Program
文摘Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.
基金supported by the Natural Science Basic Research Program of Shaanxi(No.2023-JC-QN-0306)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21B32)the National Natural Science Foundation of China(No.42174069).
文摘Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.
基金the University Grants Commission,New Delhi,India,for providing financial support in the form of the Junior Research Fellowship。
文摘Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities.
文摘This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse education researchers, selected using convenience sampling, with five or more years of nursing experience and experience teaching novice nurses, were invited to an expert meeting in July 2015. A group interview was conducted that lasted approximately 120 minutes. Study 2 examined the content validity index. Between September and November 2015, we distributed a self-administered questionnaire survey to 11 participants selected by convenience sampling. The participants included five nurse education researchers with a minimum of five years of nursing experience and experience teaching novice nurses, as well as six clinical nurses with a master’s degree or higher. Finally, 81 questionnaire items were retained from the initial 125 items. The 81-item Mentoring Function Scale for Novice Nurses had higher content validity than the original scale. To further increase the scale’s applicability, future studies should assess its reliability, construct validity, and criterion-related validity.
基金China Desert Meteorological Science Research Fund No.SQJ2004014 The Special Fund for Commonweal Project of the Ministry of Science and Technology: Research on the Monitoring and Prediction of Snow Storm Disasters in Northern China Rangelands
文摘To reveal the changing trend and annual distribution of the surface water hydrology and the local climate in the Bayanbuluk alpine-cold wetlands in the past 50 years, we used temperature, precipitation, different rank precipitation days, evaporation, water vapor pressure, relative humidity, dust storm days and snow depth to analyze their temporal variations. We conclude that there were no distinct changes in annual mean temperature, and no obvious changes in the maximum or minimum temperatures. Precipitation in warm season was the main water source in the wetlands of the study area and accounted for 92.0% of the annual total. Precipitation dropped to the lowest in the mid-1980s in the past 50 years and then increased gradually. The runoff of the Kaidu River has increased since 1987 which has a good linear response to the annual precipitation and mean temperature in Bayanbuluk alpine-cold wetland. Climate change also affected ecosystems in this area due to its direct relations to the surface water environment.
基金jointly supported by the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)the National Natural Science Foundation of China(Grant Nos.91437105,41575041 and 41430533)Special Foundation for National Commonweal Institutes of China(Grant No.IUMKY201614)
文摘The diurnal surface temperature range (DTR) has become significantly smaller over the Tibetan Plateau (TP) but larger in southeastern China, despite the daily mean surface temperature having increased steadily in both areas during recent decades. Based on ERA-Interim reanalysis data covering 1979-2012, this study shows that the weakened DTR over TP is caused by stronger warming of daily minimum surface temperature (Tmin) and a weak cooling of the daily maximum surface temper- ature (Tmax); meanwhile, the enhanced DTR over southeastern China is mainly associated with a relatively stronger/weaker warming of Tmax/Tmin. A further quantitative analysis of DTR changes through a process-based decomposition method-- the Coupled Surface-Atmosphere Climate Feedback Response Analysis Method (CFRAM)--indicates that changes in radia- tive processes are mainly responsible for the decreased DTR over the TR In particular, the increased low-level cloud cover tends to induce the radiative cooling/warming during daytime/nighttime, and the increased water vapor helps to decrease the DTR through the stronger radiative wanning during nighttime than daytime. Contributions from the changes in all radiative processes (over -2℃) are compensated for by those from the stronger decreased surface sensible heat flux during daytime than during nighttime (approximately 2.5℃), but are co-contributed by the changes in atmospheric dynamics (approximately -0.4℃) and the stronger increased latent heat flux during daytime (approximately -0.8℃). In contrast, the increased DTR over southeastern China is mainly contributed by the changes in cloud, water vapor and atmospheric dynamics. The changes in surface heat fluxes have resulted in a decrease in DTR over southeastern China.
基金the National Natural Science Foundation of China(grant no.:41430532)the Alexander von Humboldt Stiftung/Foundation,Germany for support
文摘Due to large deserts on Earth surface a thorough understanding of climate change, landscape evolution and geomorphological processes having occurred in deserts is crucial for Earth System Science. The landscapes in deserts are, however, diverse and different over the globe with regard to their geomorphological nature, human activities and geological histories. In the last decades a great number of efforts have been put to the investigation of the initial timing of the occurrence of arid climate, e. g. in northwestern China. Silty sediments in the downwind directions have been used to deduce the histories of deserts. In general, there is a lack of knowledge about processes and landscapes in Chinese drylands between the initial Miocene silt sedimentation at desert margins and the late Quaternary multiple occurrences of wetter climate with assumed large lakes in many of the deserts in northern China. The geomorphological concept of three primary triggering factors, i.e., the sediment supply, sediment availability and transport capacity of wind, and additionally the underground geology need to be fully considered for a better understanding of the environmental histories of sand seas which should not be viewed as equivalent for deserts because sand seas cover between 〈 1% and ca. 45% of the desert areas in various continents dependent on a complex interaction between various processes of both exogenous and endogenous origins.
基金Project supported by the Science and Technology Project Foundation of Guangzhou (No. 2005Z3-D0551)the Science and Technology Project Foundation of Guangzhou Education Bureau (No. 62026)
文摘Remote sensing and geographic information systems (GIS) technologies were used to detect land use/cover changes (LUCC) and to assess their impacts on land surface temperature (LST) in the Zhujiang Delta. Multi-temporal Landsat TM and Landsat ETM+ data were employed to identify patterns of LUCC as well as to quantify urban expansion and the associated decrease of vegetation cover. The thermal infrared bands of the data were used to retrieve LST. The results revealed a strong and uneven urban growth,which caused LST to raise 4.56℃in the newly urbanized part of the study area. Overall, remote sensing and GIS technologies were effective approaches for monitoring and analyzing urban growth patterns and evaluating their impacts on LST.
基金Funded by the National Nature Science Foundation of China(No.51521001)
文摘The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced with graphene oxide(GO) and reduced graphene oxide(RGO) to investigate this influence of functional groups. RGO sheets were fabricated by solvent thermal reduction in DMF medium. UV-Vis, FT-IR and XPS analyses indicate the difference of oxygen-containing groups on GO and RGO sheets surface. The observation of SEM illustrates that the addition of a smaller number of GO or RGO sheets causes a fine cellular structure of PMMA foams with a higher cell density(about 1011 cells/cm3) and smaller cell sizes(about 1-2 μm) owing to their remarkable heterogeneous nucleation effect. Compared to GO reinforced foams, the RGO/PMMA foams own lower cell density and bigger cell size in their microstructure, and their compressive strength is lower even when the reinforcement contents are the same and the foam bulk density is higher. These results indicate that the oxygen-containing groups on GO sheets’ surface are beneficial to adhere CO2 to realize a larger nucleation rate, and their strong interaction with PMMA matrix improves the mechanical property of PMMA foams.
基金Projects(50975092,50805052,U0834002) supported by the National Natural Science Foundation of ChinaProject(9151030101000007) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2009ZZ0041) supported by the Fundamental Research Funds for the Central Universities in China
文摘In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient.
文摘This study investigated the temporal and spatial changes of land surface temperature (LST) over Calabar Metropolis, Nigeria (2002 to 2016). The LST over Calabar metropolis was studied from the analysis of Landsat imageries of the investigated years (2002, 2006, 2008, 2010, 2012, 2014 and 2016). The results of the LST imagery were classified using standard deviation. GIS was further applied to extract the coverage ratio of each land use in the context of Land surface temperature (LST) pixels and results were presented in degree Celsius. The result of this study revealed a great variation in the mean LST for the selected period. The highest mean LST of 25.38°C was observed in 2016, followed by 2002 with mean LST of 25.32°C whereas, the least LST was observed in 2010. This study has shown that, the changing land use pattern of the area is capable of affecting certain characteristics of the environment such as surface temperature. The study recommends that effort should be made by the government to increase urban vegetation in order to reduce potential future increased in LST.