This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed a...This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed architecture, our research focuses on the optimal deployment strategy of the nodes on the convergence level. We aim at the maximization of the sub-network's lifetime while minimizing the deployment cost. Meanwhile, a novel metric named as the Ratio of Lifetime to Cost (RLC) is proposed to estimate the efficiency of convergence nodes deployment. Simulation results indicate that the proposed deployment algorithm can achieve the optimal number of convergence nodes. The proposed deployment strategy is able to achieve a balanced tradeoff between the network lifetime and the deployment cost.展开更多
Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC...Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.展开更多
This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a...This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a wave glider that collects data from the underwater network segment and retransmits it to the processing center.The authors consider the joint problem of optimal localization of stationary network nodes and the corresponding model for bypassing reference nodes by a wave glider.The optimality of the network is evaluated according to the criteria of energy efficiency and reliability.The influence of various physical and technical parameters of the network on its energy efficiency and on the lifespan of sensor nodes is analyzed.The analysis is carried out for networks of various scales,depending on the localization of stationary nodes and the model of bypassing the network with a wave glider.As a model example,the simulation of the functional characteristics of the network for a given size of the water area is carried out.It is shown that in the case of a medium-sized water area,the model of“bypassing the perimeter”by a wave glider is practically feasible,energy efficient and reliable for hourly data measurements.In the case of a large water area,the cluster bypass model becomes more efficient.展开更多
This paper introduces the architecture of wireless sensor networks, presents a cross-layer network management and control mechanism. The key technologies, such as Medium Access Control (MAC) and wireless routing proto...This paper introduces the architecture of wireless sensor networks, presents a cross-layer network management and control mechanism. The key technologies, such as Medium Access Control (MAC) and wireless routing protocols are discussed and compared. A proposal of applying the simple IEEE 802 MAC protocol into the wireless sensor network is introduced. In addition, in order to improve the system capacity, a multi-channel strategy for the sensor nodes is presented for decreasing the blocking probability and suppressing the accessing time delay. It is concluded that there are still a number of problems to be solved, including decreasing power consumption, improving capacity and avoiding access collision, to promote the successful commercial application of wireless sensor network.展开更多
Recently, Wireless Sensor Network (WSN) has been widely applied in many fields. In this paper, we design and implement a WSN-based Electronic Intelligent Tag System (EITS) to provide intelligent management of the mode...Recently, Wireless Sensor Network (WSN) has been widely applied in many fields. In this paper, we design and implement a WSN-based Electronic Intelligent Tag System (EITS) to provide intelligent management of the modern supermarkets. As a main transceiver, nRF24L01+ wireless module is used in this system, which will make it possible to achieve low-power and low-cost for EITS. This system fully embodies the advantages and characteristics of WSN. This paper will introduce the system architecture, hardware structure and software design in details;and put forward a specific solution. Finally, we achieve the intelligent management of the mall based on wireless sensor network technology.展开更多
To quick customize and develop intelligent campus internet of things (ICIOT) system more efficiently, in this paper an approach based on runtime model to managing intelligent campus wireless sensor networks is propose...To quick customize and develop intelligent campus internet of things (ICIOT) system more efficiently, in this paper an approach based on runtime model to managing intelligent campus wireless sensor networks is proposed. Firstly, manageability of intelligent campus wireless sensors is abstracted as runtime models which automatically and immediately propagate any observable runtime changes of target resources to corresponding architecture models. Then, a composite model of intelligent campus wireless sensors is constructed through merging their runtime models in order to manage different kinds of devices in a unified way. Finally, a customized model is constructed according to the personalized management requirement and the synchronization between the customized model and the composite model is ensured through model transformation. Thus, all the management tasks can be carried through executing operating programs on the customized model. In the part of the teaching area schools conducted experiments and compared with the traditional method, this method can be more effective management of campus facilities, more energy efficient and orderly, which can reach a 16.7% energy saving.展开更多
Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO n...Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.展开更多
Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication ...Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication fashion to automate the electrical power demand and supply and make this a cyber-physical system. SG infrastructure key elements, such as smart meters, circuit breakers, transformers, feeders, substations, control centers, grid stations, are required well-formed communication network architectures. SG infrastructure is divided into three main communication networks architectures, such as HAH, NAN, and WAN. Each of these communication network architectures requires reliable, stable, secure, high data rate at real-time with the help of different wireline and wireless communication technologies from HAN to WAN networks. To understand the complete concepts about SG, a concise review is presented and it will help the readers to get foundations of communication network architectures and technologies of SG.展开更多
Wireless sensor network nodes have only limited resources concerning memory and battery life-time. Mem- ory can be efficiently used by sharing data, and the life-time of a battery can be extended, when the node has lo...Wireless sensor network nodes have only limited resources concerning memory and battery life-time. Mem- ory can be efficiently used by sharing data, and the life-time of a battery can be extended, when the node has long power saving sleep-phases. We propose a publish/subscribe architecture that achieves these two aims. The results of our work are of great interest for sensor application developers, giving them now the opportu- nity to use our architecture for sharing data among different applications on the node as well as the different layers of the operating system. We introduce a blackboard which is used for centrally storing published val- ues, like measured data from a monitored sensor. This makes it possible to share stored data without monitoring the sensors once again, which is advantageously concerning power consumption, memory space, and reaction time. Beside the proposed publish/subscribe method for sensor nodes with its notification possibili- ties, our architecture fulfills also real-time requirements. We show how the well-known sensor operating system MANTIS OS can be extended by a real-time enabled, blackboard-based publish/subscribe architect- ture. This architecture and first of all its implementation is of special interest for cross layer optimization of sensor applications. Cross-layer approaches benefit from our architecture because the available implementa- tion can be used as an efficient framework for central storing and managing of shared values.展开更多
A Wireless Sensor Network (WSN) consists of a large number of randomly deployed sensor nodes. These sensor nodes organize themselves into a cooperative network and perform the three basic functions of sensing, computa...A Wireless Sensor Network (WSN) consists of a large number of randomly deployed sensor nodes. These sensor nodes organize themselves into a cooperative network and perform the three basic functions of sensing, computations and communications. Research in WSNs has become an extensive explorative area during the last few years, especially due to the challenges offered, energy constraints of the sensors being one of them. In this paper, a thorough comprehensive study of the energy conservation challenges in wireless sensor networks is carried out. The need for effective utilization of limited power resources is also emphasized, which becomes pre-eminent to the Wireless Sensor Networks.展开更多
The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of...The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.展开更多
Ultra-low power transceiver design is proposed for wireless sensor node used in the wireless sensor network(WSN).Typically,each sensor node contains a transceiver so it is required that both hardware and software de...Ultra-low power transceiver design is proposed for wireless sensor node used in the wireless sensor network(WSN).Typically,each sensor node contains a transceiver so it is required that both hardware and software designs of WSN node must take care of energy consumption during all modes of operation including active/sleep modes so that the operational life of each node can be increased in order to increase the lifetime of network.The current declared size of the wireless sensor node is of millimeter order,excluding the power source and crystal oscillator.We have proposed a new 2.4 GHz transceiver that has five blocks namely XO,PLL,PA,LNA and IF.The proposed transceiver incorporates less number of low-drop outs(LDOs)regulators.The size of the transceiver is reduced by decreasing the area of beneficiary components up to 0.41 mm;of core area in such a way that some functions are optimally distributed among other components.The proposed design is smaller in size and consumes less power,<1 mW,compared to other transceivers.The operating voltage has also been reduced to 1 V.This transceiver is most efficient and will be fruitful for the wireless networks as it has been designed by considering modern requirements.展开更多
Against the demand of intelligent greenhouse construction of facility agriculture,greenhouse environment monitoring system is developed.The system contains three-layer architecture: sensor network layer at the bottom,...Against the demand of intelligent greenhouse construction of facility agriculture,greenhouse environment monitoring system is developed.The system contains three-layer architecture: sensor network layer at the bottom,data transmission convergence layer in the middle and monitoring application layer on the top,which is different from design idea of the existing system architecture.The bottom layer uses ZigBee wireless communication technology to construct wireless sensor network,and node type contains coordinator,router and acquisition terminal.Acquisition terminal is distributed in each greenhouse to collect data and play the role of wireless transmission,and router plays the function of data forwarding as the bridge of acquisition terminal and coordinator.Middle layer is composed of monitoring software developed by Lab VIEW software of NI Company and coordinator,which is used to gather data from the bottom layer.The top layer is comprehensive monitoring platform developed by Java language,which is used to gather greenhouse data of all plantation bases in one region,thereby providing comprehensive information service for government,enterprise and farmer.Greenhouse environment monitoring system realizes data collection and sharing of greenhouse environment information(air temperature,air humidity,light intensity and carbon dioxide concentration).Via test verification,the system's operation is stable,with certain application value.展开更多
This article presents BigEar, a wireless low-cost speech capturing interface that aims to realize unobtrusive and transparent context-aware vocal interaction for home automation. The speech recognition process impleme...This article presents BigEar, a wireless low-cost speech capturing interface that aims to realize unobtrusive and transparent context-aware vocal interaction for home automation. The speech recognition process implemented in BigEar system considers noise sources including possible holes in the reconstructed audio stream and tries to overcome them by means of inexactness toleration mechanisms to improve intelligibility of the reconstructed signal. Key contribution of this work is the use of extremely low cost devices to realize a modular flexible and real-time wireless sensor network. On-field implementation and experiments show that the proposed solution can perform real-time speech reconstruction, while listening tests confirm the intelligibility of the reconstructed signal.展开更多
基金supported by National S&T Major Project of China under Grant No.2010 ZX03005-003National Key Technology Research and Develop ment Program of China under Grant No.2011BAK12B02Program for New Century Excellent Talents in University (NCET-10-0294),China
文摘This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed architecture, our research focuses on the optimal deployment strategy of the nodes on the convergence level. We aim at the maximization of the sub-network's lifetime while minimizing the deployment cost. Meanwhile, a novel metric named as the Ratio of Lifetime to Cost (RLC) is proposed to estimate the efficiency of convergence nodes deployment. Simulation results indicate that the proposed deployment algorithm can achieve the optimal number of convergence nodes. The proposed deployment strategy is able to achieve a balanced tradeoff between the network lifetime and the deployment cost.
基金supported by the National Natural Science Foundation of China(6104000561001126+5 种基金61271262)the China Postdoctoral Science Foundation Funded Project(201104916382012T50789)the Natural Science Foundation of Shannxi Province of China(2011JQ8036)the Special Fund for Basic Scientific Research of Central Colleges (CHD2012ZD005)the Research Fund of Zhejiang University of Technology(20100244)
文摘Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.
基金The research was partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program:Advanced Digital Technologies(Contract No.075-15-2020-903 dated 16.11.2020).
文摘This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a wave glider that collects data from the underwater network segment and retransmits it to the processing center.The authors consider the joint problem of optimal localization of stationary network nodes and the corresponding model for bypassing reference nodes by a wave glider.The optimality of the network is evaluated according to the criteria of energy efficiency and reliability.The influence of various physical and technical parameters of the network on its energy efficiency and on the lifespan of sensor nodes is analyzed.The analysis is carried out for networks of various scales,depending on the localization of stationary nodes and the model of bypassing the network with a wave glider.As a model example,the simulation of the functional characteristics of the network for a given size of the water area is carried out.It is shown that in the case of a medium-sized water area,the model of“bypassing the perimeter”by a wave glider is practically feasible,energy efficient and reliable for hourly data measurements.In the case of a large water area,the cluster bypass model becomes more efficient.
文摘This paper introduces the architecture of wireless sensor networks, presents a cross-layer network management and control mechanism. The key technologies, such as Medium Access Control (MAC) and wireless routing protocols are discussed and compared. A proposal of applying the simple IEEE 802 MAC protocol into the wireless sensor network is introduced. In addition, in order to improve the system capacity, a multi-channel strategy for the sensor nodes is presented for decreasing the blocking probability and suppressing the accessing time delay. It is concluded that there are still a number of problems to be solved, including decreasing power consumption, improving capacity and avoiding access collision, to promote the successful commercial application of wireless sensor network.
文摘Recently, Wireless Sensor Network (WSN) has been widely applied in many fields. In this paper, we design and implement a WSN-based Electronic Intelligent Tag System (EITS) to provide intelligent management of the modern supermarkets. As a main transceiver, nRF24L01+ wireless module is used in this system, which will make it possible to achieve low-power and low-cost for EITS. This system fully embodies the advantages and characteristics of WSN. This paper will introduce the system architecture, hardware structure and software design in details;and put forward a specific solution. Finally, we achieve the intelligent management of the mall based on wireless sensor network technology.
文摘To quick customize and develop intelligent campus internet of things (ICIOT) system more efficiently, in this paper an approach based on runtime model to managing intelligent campus wireless sensor networks is proposed. Firstly, manageability of intelligent campus wireless sensors is abstracted as runtime models which automatically and immediately propagate any observable runtime changes of target resources to corresponding architecture models. Then, a composite model of intelligent campus wireless sensors is constructed through merging their runtime models in order to manage different kinds of devices in a unified way. Finally, a customized model is constructed according to the personalized management requirement and the synchronization between the customized model and the composite model is ensured through model transformation. Thus, all the management tasks can be carried through executing operating programs on the customized model. In the part of the teaching area schools conducted experiments and compared with the traditional method, this method can be more effective management of campus facilities, more energy efficient and orderly, which can reach a 16.7% energy saving.
基金This work is supported in part by the US National Science Foundation under Grants CNS-1320664, and by the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Aubur, AL, USA.
文摘Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.
文摘Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication fashion to automate the electrical power demand and supply and make this a cyber-physical system. SG infrastructure key elements, such as smart meters, circuit breakers, transformers, feeders, substations, control centers, grid stations, are required well-formed communication network architectures. SG infrastructure is divided into three main communication networks architectures, such as HAH, NAN, and WAN. Each of these communication network architectures requires reliable, stable, secure, high data rate at real-time with the help of different wireline and wireless communication technologies from HAN to WAN networks. To understand the complete concepts about SG, a concise review is presented and it will help the readers to get foundations of communication network architectures and technologies of SG.
文摘Wireless sensor network nodes have only limited resources concerning memory and battery life-time. Mem- ory can be efficiently used by sharing data, and the life-time of a battery can be extended, when the node has long power saving sleep-phases. We propose a publish/subscribe architecture that achieves these two aims. The results of our work are of great interest for sensor application developers, giving them now the opportu- nity to use our architecture for sharing data among different applications on the node as well as the different layers of the operating system. We introduce a blackboard which is used for centrally storing published val- ues, like measured data from a monitored sensor. This makes it possible to share stored data without monitoring the sensors once again, which is advantageously concerning power consumption, memory space, and reaction time. Beside the proposed publish/subscribe method for sensor nodes with its notification possibili- ties, our architecture fulfills also real-time requirements. We show how the well-known sensor operating system MANTIS OS can be extended by a real-time enabled, blackboard-based publish/subscribe architect- ture. This architecture and first of all its implementation is of special interest for cross layer optimization of sensor applications. Cross-layer approaches benefit from our architecture because the available implementa- tion can be used as an efficient framework for central storing and managing of shared values.
文摘A Wireless Sensor Network (WSN) consists of a large number of randomly deployed sensor nodes. These sensor nodes organize themselves into a cooperative network and perform the three basic functions of sensing, computations and communications. Research in WSNs has become an extensive explorative area during the last few years, especially due to the challenges offered, energy constraints of the sensors being one of them. In this paper, a thorough comprehensive study of the energy conservation challenges in wireless sensor networks is carried out. The need for effective utilization of limited power resources is also emphasized, which becomes pre-eminent to the Wireless Sensor Networks.
基金supported by the National Basic Research Program of China (973 Program No.2012CB316100)
文摘The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.
基金Supported by Young Scientists Fund of the National Natural Science Foundation of China(61201040)
文摘Ultra-low power transceiver design is proposed for wireless sensor node used in the wireless sensor network(WSN).Typically,each sensor node contains a transceiver so it is required that both hardware and software designs of WSN node must take care of energy consumption during all modes of operation including active/sleep modes so that the operational life of each node can be increased in order to increase the lifetime of network.The current declared size of the wireless sensor node is of millimeter order,excluding the power source and crystal oscillator.We have proposed a new 2.4 GHz transceiver that has five blocks namely XO,PLL,PA,LNA and IF.The proposed transceiver incorporates less number of low-drop outs(LDOs)regulators.The size of the transceiver is reduced by decreasing the area of beneficiary components up to 0.41 mm;of core area in such a way that some functions are optimally distributed among other components.The proposed design is smaller in size and consumes less power,<1 mW,compared to other transceivers.The operating voltage has also been reduced to 1 V.This transceiver is most efficient and will be fruitful for the wireless networks as it has been designed by considering modern requirements.
基金Supported by Applied Technology Research and Development Fund Plan Item in Inner Mongolia(20140114)
文摘Against the demand of intelligent greenhouse construction of facility agriculture,greenhouse environment monitoring system is developed.The system contains three-layer architecture: sensor network layer at the bottom,data transmission convergence layer in the middle and monitoring application layer on the top,which is different from design idea of the existing system architecture.The bottom layer uses ZigBee wireless communication technology to construct wireless sensor network,and node type contains coordinator,router and acquisition terminal.Acquisition terminal is distributed in each greenhouse to collect data and play the role of wireless transmission,and router plays the function of data forwarding as the bridge of acquisition terminal and coordinator.Middle layer is composed of monitoring software developed by Lab VIEW software of NI Company and coordinator,which is used to gather data from the bottom layer.The top layer is comprehensive monitoring platform developed by Java language,which is used to gather greenhouse data of all plantation bases in one region,thereby providing comprehensive information service for government,enterprise and farmer.Greenhouse environment monitoring system realizes data collection and sharing of greenhouse environment information(air temperature,air humidity,light intensity and carbon dioxide concentration).Via test verification,the system's operation is stable,with certain application value.
文摘This article presents BigEar, a wireless low-cost speech capturing interface that aims to realize unobtrusive and transparent context-aware vocal interaction for home automation. The speech recognition process implemented in BigEar system considers noise sources including possible holes in the reconstructed audio stream and tries to overcome them by means of inexactness toleration mechanisms to improve intelligibility of the reconstructed signal. Key contribution of this work is the use of extremely low cost devices to realize a modular flexible and real-time wireless sensor network. On-field implementation and experiments show that the proposed solution can perform real-time speech reconstruction, while listening tests confirm the intelligibility of the reconstructed signal.