Nitrogen plasma passivation (NPP) on (111) germanium (Ge) was studied in terms of the interface trap density, roughness, and interfacial layer thickness using plasma-enhanced chemical vapor deposition (PECVD)....Nitrogen plasma passivation (NPP) on (111) germanium (Ge) was studied in terms of the interface trap density, roughness, and interfacial layer thickness using plasma-enhanced chemical vapor deposition (PECVD). The results show that NPP not only reduces the interface states, but also improves the surface roughness of Ge, which is beneficial for suppressing the channel scattering at both low and high field regions of Ge MOSFETs. However, the interracial layer thickness is also increased by the NPP treatment, which will impact the equivalent oxide thickness (EOT) scaling and thus degrade the device performance gain from the improvement of the surface morphology and the interface passivation. To obtain better device performance of Ge MOSFETs, suppressing the interfacial layer regrowth as well as a trade-off with reducing the interface states and roughness should be considered carefully when using the NPP process.展开更多
The microfiuidic system is a multi-physics interaction field that has at- tracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper present...The microfiuidic system is a multi-physics interaction field that has at- tracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper presents a thickness-averaged model to solve three-dimensional complex electroosmotic flows in a wide-shallow microchan- nel/chamber combined (MCC) chip based on the Navier-Stokes equations for the flow field and the Poisson equation to the electric field. Behaviors of the electroosmotic flow, the electric field, and the pressure are analyzed. The quantitative effects of the wall charge density (or the zeta potential) and the applied electric field on the electroosmotic flow rate are investigated. The two-dimensional thickness-averaged flow model greatly simplifies the three-dimensional computation of the complex electroosmotic flows, and correctly reflects the electrookinetic effects of the wall charge on the flow. The numerical results indicate that the electroosmotic flow rate of the thickness-averaged model agrees well with that of the three-dimensional slip-boundary flow model. The flow streamlines and pressure distribution of these two models are in qualitative agreement.展开更多
We theoretically study the influence of spacer layer thickness fluctuation(SLTF) on the mobility of a twodimensional electron gas(2DEG) in the modulation-doped Al x Ga 1 x As/GaAs/Al x Ga 1 x As quantum well.The d...We theoretically study the influence of spacer layer thickness fluctuation(SLTF) on the mobility of a twodimensional electron gas(2DEG) in the modulation-doped Al x Ga 1 x As/GaAs/Al x Ga 1 x As quantum well.The dependence of the mobility limited by SLTF scattering on spacer layer thickness and donor density are obtained.The results show that SLTF scattering is an important scattering mechanism for the quantum well structure with a thick well layer.展开更多
对非对称结构形式的变厚度复合材料层合板在准静态压缩载荷下的失效机理进行了试验和数值研究。在ABAQUS/Explicit中建立全新的三维有限元模型(Finite element model, FEM),其中Hashin准则用于复合材料层合板渐进失效分析,内聚力建模用...对非对称结构形式的变厚度复合材料层合板在准静态压缩载荷下的失效机理进行了试验和数值研究。在ABAQUS/Explicit中建立全新的三维有限元模型(Finite element model, FEM),其中Hashin准则用于复合材料层合板渐进失效分析,内聚力建模用于模拟分层的萌生和扩展。根据试验得到的应变数据分析,不连续的中性轴使层合板中产生弯矩,这些弯矩与轴向压缩载荷相互耦合,共同作用在层合板上。有限元结果表明,在薄段和变厚度段的交界处存在明显的应力集中,且薄段的应力大于厚段的应力。在交界处,发生了分层以及纤维和基体的压缩损伤,这与试验的结果一致。FEM预测的极限荷载比试验测得的平均极限荷载小10.7%,证明了模型的可行性和合理性。展开更多
In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding ...In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding processes.The melting points of magnesium(Mg)and copper(Cu)have a significant difference(nearly 400℃)and this may lead to a large difference in the microstructure and joint performance of Mg-Cu joints.However,diffusion bonding can be used to join these alloys without much difficulty.This work analyses the effect of parameters on diffusion layer thickness,hardness and strength of magnesium-copper dissimilar joints.The experiments were conducted using three-factor,five-level,central composite rotatable design matrix.Empirical relationships were developed to predict diffusion layer thickness,hardness and strength using response surface methodology.It is found that bonding temperature has predominant effect on bond characteristics.Joints fabricated at a bonding temperature of 450℃, bonding pressure of 12 MPa and bonding time of 30 min exhibited maximum shear strength and bonding strength of 66 and 81 MPa, respectively.展开更多
The effects of directional riblets surfaces on the turbulent/non-turbulent(T/NT) interface in turbulent boundary layers are experimentally investigated using two-dimensional time-resolved particle image velocimetry(PI...The effects of directional riblets surfaces on the turbulent/non-turbulent(T/NT) interface in turbulent boundary layers are experimentally investigated using two-dimensional time-resolved particle image velocimetry(PIV). The velocity field of streamwise-wall-normal plane for the smooth surface, converging and diverging riblets surfaces are measured. The interface is detected using the criterion of local kinetic energy. The statistical properties of interface height and conditional averaged velocity for different surfaces are analyzed. It is shown that, the converging and diverging riblets surfaces have little effect on the fractal dimension of the T/NT interface, but they cause the intermittency profile deviate from error function and the probability distribution of interface height deviate from Gaussian function. To be specific, the distribution of interface height for the converging riblets surface shows a positive skewness while it shows a negative skewness for the diverging riblets surface.Moreover, the conditional averaged streamwise velocity and spanwise vorticity across the interface are analyzed, and it is found that their self-similarities are preserved for different surfaces when normalized with respective friction velocity. The correlation analysis reveals that near-wall streamwise velocity fluctuation and interface height show a negative correlation.展开更多
基金supported by the National Basic Research Program of China(Grant No.2011CBA00601)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2009ZX02035-001)the National Natural Science Foundation of China(Grant Nos.60625403,60806033,and 60925015)
文摘Nitrogen plasma passivation (NPP) on (111) germanium (Ge) was studied in terms of the interface trap density, roughness, and interfacial layer thickness using plasma-enhanced chemical vapor deposition (PECVD). The results show that NPP not only reduces the interface states, but also improves the surface roughness of Ge, which is beneficial for suppressing the channel scattering at both low and high field regions of Ge MOSFETs. However, the interracial layer thickness is also increased by the NPP treatment, which will impact the equivalent oxide thickness (EOT) scaling and thus degrade the device performance gain from the improvement of the surface morphology and the interface passivation. To obtain better device performance of Ge MOSFETs, suppressing the interfacial layer regrowth as well as a trade-off with reducing the interface states and roughness should be considered carefully when using the NPP process.
基金Project supported by the National Natural Science Foundation of China (No. 11172111) and the Ph.D. Programs Foundation of Ministry of Education of China (No. 20090142120007)
文摘The microfiuidic system is a multi-physics interaction field that has at- tracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper presents a thickness-averaged model to solve three-dimensional complex electroosmotic flows in a wide-shallow microchan- nel/chamber combined (MCC) chip based on the Navier-Stokes equations for the flow field and the Poisson equation to the electric field. Behaviors of the electroosmotic flow, the electric field, and the pressure are analyzed. The quantitative effects of the wall charge density (or the zeta potential) and the applied electric field on the electroosmotic flow rate are investigated. The two-dimensional thickness-averaged flow model greatly simplifies the three-dimensional computation of the complex electroosmotic flows, and correctly reflects the electrookinetic effects of the wall charge on the flow. The numerical results indicate that the electroosmotic flow rate of the thickness-averaged model agrees well with that of the three-dimensional slip-boundary flow model. The flow streamlines and pressure distribution of these two models are in qualitative agreement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60976008,61006004,61076001,and10979507)the National Basic Research Program of China (Grant No. A000091109-05)the National High Technology Research and Development Program of China (Grant No. 2011AA03A101)
文摘We theoretically study the influence of spacer layer thickness fluctuation(SLTF) on the mobility of a twodimensional electron gas(2DEG) in the modulation-doped Al x Ga 1 x As/GaAs/Al x Ga 1 x As quantum well.The dependence of the mobility limited by SLTF scattering on spacer layer thickness and donor density are obtained.The results show that SLTF scattering is an important scattering mechanism for the quantum well structure with a thick well layer.
文摘对非对称结构形式的变厚度复合材料层合板在准静态压缩载荷下的失效机理进行了试验和数值研究。在ABAQUS/Explicit中建立全新的三维有限元模型(Finite element model, FEM),其中Hashin准则用于复合材料层合板渐进失效分析,内聚力建模用于模拟分层的萌生和扩展。根据试验得到的应变数据分析,不连续的中性轴使层合板中产生弯矩,这些弯矩与轴向压缩载荷相互耦合,共同作用在层合板上。有限元结果表明,在薄段和变厚度段的交界处存在明显的应力集中,且薄段的应力大于厚段的应力。在交界处,发生了分层以及纤维和基体的压缩损伤,这与试验的结果一致。FEM预测的极限荷载比试验测得的平均极限荷载小10.7%,证明了模型的可行性和合理性。
基金support rendered through a Major Research Project No. F-31-51/2005(SR)
文摘In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding processes.The melting points of magnesium(Mg)and copper(Cu)have a significant difference(nearly 400℃)and this may lead to a large difference in the microstructure and joint performance of Mg-Cu joints.However,diffusion bonding can be used to join these alloys without much difficulty.This work analyses the effect of parameters on diffusion layer thickness,hardness and strength of magnesium-copper dissimilar joints.The experiments were conducted using three-factor,five-level,central composite rotatable design matrix.Empirical relationships were developed to predict diffusion layer thickness,hardness and strength using response surface methodology.It is found that bonding temperature has predominant effect on bond characteristics.Joints fabricated at a bonding temperature of 450℃, bonding pressure of 12 MPa and bonding time of 30 min exhibited maximum shear strength and bonding strength of 66 and 81 MPa, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.91852206,11721202,11490552)。
文摘The effects of directional riblets surfaces on the turbulent/non-turbulent(T/NT) interface in turbulent boundary layers are experimentally investigated using two-dimensional time-resolved particle image velocimetry(PIV). The velocity field of streamwise-wall-normal plane for the smooth surface, converging and diverging riblets surfaces are measured. The interface is detected using the criterion of local kinetic energy. The statistical properties of interface height and conditional averaged velocity for different surfaces are analyzed. It is shown that, the converging and diverging riblets surfaces have little effect on the fractal dimension of the T/NT interface, but they cause the intermittency profile deviate from error function and the probability distribution of interface height deviate from Gaussian function. To be specific, the distribution of interface height for the converging riblets surface shows a positive skewness while it shows a negative skewness for the diverging riblets surface.Moreover, the conditional averaged streamwise velocity and spanwise vorticity across the interface are analyzed, and it is found that their self-similarities are preserved for different surfaces when normalized with respective friction velocity. The correlation analysis reveals that near-wall streamwise velocity fluctuation and interface height show a negative correlation.