We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is in...We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is investigated. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model for the second triplet state of the system. The investigations show that the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to...1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].展开更多
This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Fai...This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Failure Time (AFT) model, Cox Proportional Hazards model, and Survival model, we assess the effectiveness of these models in capturing survival rates across varying gender, age groups, and treatment categories. Simulated data was used to fit the models, with model identification criteria (AIC, BIC, and R2) applied for evaluation. Results indicate that the AFT model is particularly sensitive to interaction terms, showing significant effects for older age groups (50 - 60 years) and treatment interaction, while the Cox model provides a more stable fit across all age groups. The Survival model displayed variability, with its performance diminishing when interaction terms were introduced, particularly in older age groups. Overall, while the AFT model captures the complexities of interactions in the data, the Cox model’s stability suggests it may be better suited for general analyses without strong interaction effects. The findings highlight the importance of model selection in survival analysis, especially in complex disease progression scenarios like HIV/AIDS.展开更多
With the development of the rail transit industry,more attention has been paid to the passive safety of rail vehicles.Structural damage is one of the main failure behaviors in a rail vehicle collision,but it has been ...With the development of the rail transit industry,more attention has been paid to the passive safety of rail vehicles.Structural damage is one of the main failure behaviors in a rail vehicle collision,but it has been paid little attention to in past research.In this paper,the quasi-static fracture experiments of SUS301L-MT under different stress states were carried out.The mechanical fracture properties of this material were studied,and the corresponding finite element simulation accuracy was improved to guide the design of vehicle crashworthiness.Through the tests,the fracture behavior of materials with wide stress triaxiality was obtained,and each specimen’s fracture locations and fracture strains were determined.Parameters of a generalized incremental stress state dependent damage model(GISSMO)of the material were calibrated,and the model’s accuracy was verified with test results from a 45°shear specimen.The GISSMO failure model accurately reflected the fracture characteristics of the material.The mesh dependency of this model was modified and discussed.The results show that the simulation agrees well with experimental data for the force-displacement curve after correction,but the strain distribution needs to be further studied and improved.展开更多
DNA nanotubes(DNTs)with user-defined shapes and functionalities have potential applications in many fields.So far,compared with numerous experimental studies,there have been only a handful of models on the mechanical ...DNA nanotubes(DNTs)with user-defined shapes and functionalities have potential applications in many fields.So far,compared with numerous experimental studies,there have been only a handful of models on the mechanical properties of such DNTs.This paper aims at presenting a multiscale model to quantify the correlations among the pre-tension states,tensile properties,encapsulation structures of DNTs,and the surrounding factors.First,by combining a statistical worm-like-chain(WLC)model of single DNA deformation and Parsegian's mesoscopic model of DNA liquid crystal free energy,a multiscale tensegrity model is established,and the pre-tension state of DNTs is characterized theoretically for the first time.Then,by using the minimum potential energy principle,the force-extension curve and tensile rigidity of pre-tension DNTs are predicted.Finally,the effects of the encapsulation structure and surrounding factors on the tensile properties of DNTs are studied.The predictions for the tensile behaviors of DNTs can not only reproduce the existing experimental results,but also reveal that the competition of DNA intrachain and interchain interactions in the encapsulation structures determines the pre-tension states of DNTs and their tensile properties.The changes in the pre-tension states and environmental factors make the monotonic or non-monotonic changes in the tensile properties of DNTs under longitudinal loads.展开更多
A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity o...A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity of clay minerals(Mc)were established,taking the 1st member of Cretaceous Qingshankou Formation in the northern Songliao Basin as an example.The model and charts were derived from swelling oil experiments performed on naturally evolved kerogens and adsorbed oil experiments on clays(separated from shale core samples).They were constructed on the basis of clarifying the control law of kerogen maturity evolution on its adsorption-swelling capacity,and considering the effect of both the clay pore surface area that occupied by adsorbed oil and formation temperature.The results are obtained in four aspects:(1)For the Qing 1 Member shale,with the increase of maturity,Mk decreases.Given Ro of 0.83%–1.65%,Mk is about 50–250 mg/g.(2)The clay in shale adsorbs asphaltene.Mc is 0.63 mg/m^(2),and about 15%of the clay pore surface is occupied by adsorbed oil.(3)In the low to medium maturity stages,the shale oil adsorption is controlled by organic matter.When Ro>1.3%,the shale oil adsorption capacity is contributed by clay pores.(4)The oil adsorption capacity evaluated on the surface at room temperature is 8%–22%(avg.15%)higher than that is held in the formations.The proposed evaluation model reveals the occurrence mechanisms of shale oils with different maturities,and provides a new insight for estimating the reserves of shale oil under formation temperature conditions.展开更多
The remaining useful life(RUL) prediction of mechanical products has been widely studied for online system performance reliability, device remanufacturing, and product safety(safety awareness and safety improvement). ...The remaining useful life(RUL) prediction of mechanical products has been widely studied for online system performance reliability, device remanufacturing, and product safety(safety awareness and safety improvement). These studies incorporated many di erent models, algorithms, and techniques for modeling and assessment. In this paper, methods of RUL assessment are summarized and expounded upon using two major methods: physics model based and data driven based methods. The advantages and disadvantages of each of these methods are deliberated and compared as well. Due to the intricacy of failure mechanism in system, and di culty in physics degradation observation, RUL assessment based on observations of performance variables turns into a science in evaluating the degradation. A modeling method from control systems, the state space model(SSM), as a first order hidden Markov, is presented. In the context of non-linear and non-Gaussian systems, the SSM methodology is capable of performing remaining life assessment by using Bayesian estimation(sequential Monte Carlo). Being e ective for non-linear and non-Gaussian dynamics, the methodology can perform the assessment recursively online for applications in CBM(condition based maintenance), PHM(prognostics and health management), remanufacturing, and system performance reliability. Finally, the discussion raises concerns regarding online sensing data for SSM modeling and assessment of RUL.展开更多
A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework o...A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework of critical state soil mechanics and modified Cam-clay model. The existing model hasbeen generalized to simulate the experimentally observed behavior of unsaturated clays by introducingBishop's stress and suction as independent stress parameters and modifying the hardening rule and yieldcriterion to take into account the role of suction. Also, according to previous studies, an increase intemperature causes a reduction in specific volume. A reduction in suction (wetting) for a given confiningstress may induce an irreversible volumetric compression (collapse). Thus an increase in suction (drying)raises a specific volume i.e. the movement of normal consolidation line (NCL) to higher values of voidratio. However, some experimental data confirm the assumption that this reduction is dependent on thestress level of soil element. A generalized approach considering the effect of stress level on themagnitude of clays thermal dependency in compression plane is proposed in this study. The number ofmodeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitatethe usefulness of model for practical applications. A step-by-step procedure used for parameter calibrationis also described. The model is finally evaluated using a comprehensive set of experimental datafor the thermo-mechanical behavior of unsaturated soils.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - t...To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - the Whirling Beam. The test results showed some unsteady aerodynamic behavior of the model rotor operating in the vortex-ring state. A very irregular variation of the rotortorque at low rate-of-descent was observed here for the first time. We considered it to be the start of the 'power settling' and determined the critical descent velocity according to this observation. A previous criterion for the vortex-ring state was modified to give a semi-empirical method for predicting the entire vortex-ring state boundary. The computed boundary shows a good correlation with the model test results and the flight experiences.展开更多
We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy...We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy operator of three-electron systems in the impurity Hubbard model in the quartet state of the system in a <em>v</em>-dimensional lattice. We have reduced the study of the spectrum of the three-electron quartet state operator in the impurity Hubbard model to the study of the spectrum of a simpler operator. We proved the essential spectra of the three-electron systems in the Impurity Hubbard model in the quartet state is the union of no more than six segments, and the discrete spectrum of the system is consists of no more than four eigenvalues.展开更多
Mesoscopic characteristics of a clayey soil specimen subjected to macroscopic loading are examined using a medi- cal-use computerized tomography (CT) instrument. Disturbed state concept (DSC) theory is based on the ut...Mesoscopic characteristics of a clayey soil specimen subjected to macroscopic loading are examined using a medi- cal-use computerized tomography (CT) instrument. Disturbed state concept (DSC) theory is based on the utilization of the hard- ening model. DSC indirectly describes material behavior by claiming that the actual response of the material is expressed in terms of the relative intact (RI) response and the fully adjusted (FA) response. The occurrence of mesoscopic structural changes of material has similarities with the occurrence of a macroscopic response of the material under loadings. In general, the relative changing value of a softening material is three to five times more than that of a hardening material. Whether special zones exist or not in a specimen cross section does not affect the following conclusion: hardening material and softening material show me- chanical differences with CT statistical indices values prominently changing, and the change is related to the superposing of a disturbance factor. A new disturbance factor evolution function is proposed. Thus, mesoscopic statistical indices are introduced to describe macroscopic behavior through the new evolution function. An application of the new evolution function proves the effectiveness of the amalgamation of a macroscopic and a mesoscopic experimental phenomenon measurement methods.展开更多
A new analytical method is proposed to analyze the force acting on a rectangular oscillating buoy due to linear waves.In the method a new analytical expression for the diffraction velocity potential is obtained first ...A new analytical method is proposed to analyze the force acting on a rectangular oscillating buoy due to linear waves.In the method a new analytical expression for the diffraction velocity potential is obtained first by use of theeigenfunction expansion method and then the wave excitation force is calculated by use of the known incident wavepotential and the diffraction potential. Compared with the classical analytical method, it can be seen that the presentmethod is simpler for a two-dimensional problem due to the comparable effort needed for the computation ofdiffraction potential and for that of radiated potential. To verify the correctness of the method, a classical example inthe reference is recomputed and the obtained results are in good accordance with those by use of other methods,which shows that the present method is correct.展开更多
In this study,we systematically investigated the two-proton(2p)radioactivity half-lives from the excited state of nuclei near the proton drip line within the Gamowlike model(GLM)and modified Gamow-like model(MGLM).The...In this study,we systematically investigated the two-proton(2p)radioactivity half-lives from the excited state of nuclei near the proton drip line within the Gamowlike model(GLM)and modified Gamow-like model(MGLM).The calculated results were highly consistent with the theoretical values obtained using the unified fission model[Chin.Phys.C 45,124105(2021)],effective liquid drop model,and generalized liquid drop model[Acta Phys.Sin 71,062301(2022)].Furthermore,utilizing the GLM and MGLM,we predicted the 2p radioactivity halflives from the excited state for some nuclei that are not yet available experimentally.Simultaneously,by analyzing the calculated results from these theoretical models,it was found that the half-lives are strongly dependent on Qand l.展开更多
The low-order harmonic generation of hydrogen molecular ion interacting with a linearly polarized laser field has been investigated theoretically by using a simple two-state model. The validity of the two-state model ...The low-order harmonic generation of hydrogen molecular ion interacting with a linearly polarized laser field has been investigated theoretically by using a simple two-state model. The validity of the two-state model is carefully examined by comparing the harmonic spectra of hydrogen molecular ion obtained from this model with those from the three-dimensional time-dependent Schr¨odinger equation. When combined with the Morlet transform of quantum time-frequency spectrum,the two-state model can be used to study the dynamical origin of the low-order harmonic generation of hydrogen molecular ion driven by low-frequency pulses. In addition, some interesting structures of the time profiles for low order harmonics are obtained.展开更多
We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of essential spectrum and discrete spectrum of the systems in the third and fourth doublet states in a &...We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of essential spectrum and discrete spectrum of the systems in the third and fourth doublet states in a <em>v</em>-dimensional lattice is investigated. We prove that the essential spectrum of the system in a third doublet state consists is the union of at most four segments, and discrete spectrum of the system is empty. We show that the essential spectrum of the system in a fourth doublet state consists of the union of at most seven segments, and discrete spectrum of the system consists of no more than one point.展开更多
Encouraged by the wide spectrum of novel applications of gas hydrates,e.g.,energy recovery,gas separation,gas storage,gas transportation,water desalination,and hydrogen hydrate as a green energy resource,as well as CO...Encouraged by the wide spectrum of novel applications of gas hydrates,e.g.,energy recovery,gas separation,gas storage,gas transportation,water desalination,and hydrogen hydrate as a green energy resource,as well as CO2 capturing,many scientists have focused their attention on investigating this important phenomenon.Of course,from an engineering viewpoint,the mathematical modeling of gas hydrates is of paramount importance,as anticipation of gas hydrate stability conditions is effective in the design and control of industrial processes.Overall,the thermodynamic modeling of gas hydrate can be tackled as an equilibration of three phases,i.e.,liquid,gas,and solid hydrate.The inseparable component in all hydrate systems,water,is highly polar and non-ideal,necessitating the use of more advanced equation of states(EoSs) that take into account more intermolecular forces for thermodynamic modeling of these systems.Motivated by the ever-increasing number of publications on this topic,this study aims to review the application of associating EoSs for the thermodynamic modeling of gas hydrates.Three most important hydrate-based models available in the literature including the van der Waals-Platteeuw(vdW-P) model,Chen-Guo model,and Klauda-Sandler model coupled with and SAFT EoSs were investigated and compared with cubic EoSs.It was concluded that the CPA and SAFT EoSs gave very accurate results for hydrate systems as they take into account the association interactions,which are very crucial in gas hydrate systems in which water,methanol,glycols,and other types of associating compounds are available.Moreover,it was concluded that the CPA EoS is easier to use than the SAFT-type EoSs and our suggestion for the gas hydrate systems is the CPA EoS.展开更多
The current design philosophy for submarine hulls,in the preliminary design stage,generally considers as governing limit states material yielding along with various buckling modes.It is common belief that,beyond the d...The current design philosophy for submarine hulls,in the preliminary design stage,generally considers as governing limit states material yielding along with various buckling modes.It is common belief that,beyond the design pressure,material yielding of the shell plating should occur first,eventually followed by local buckling,while global buckling currently retains the highest safety factor.On the other hand,in the aeronautical field,in some cases structural components are designed in such a way that local instability may occur within the design loads,being the phenomena inside the material elastic range and not leading to a significant drop in term of stiffness.This paper is aimed at investigating the structural response beyond a set of selected limit states,using nonlinear FE method adopting different initial imperfection models,to provide the designers with new information useful for calibrating safety factors.It was found that both local and global buckling can be considered as ultimate limit states,with a significant sensitivity towards initial imperfection,while material yielding and tripping buckling of frames show a residual structural capacity.In conclusion,it was found that the occurrence of local buckling leads to similar sudden catastrophic consequences as global buckling,with the ultimate strength capacity highly affected by the initial imperfection shape and amplitude.展开更多
We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensi...We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensional lattice. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model. The investigations show that there are such cases: 1) the essential spectrum of the system consists of the union of no more than eight segments, and the discrete spectrum of the system consists of no more than three eigenvalues;2) the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues;3) the essential spectrum of the system consists of the union of no more than three segments, and the discrete spectrum of the system is the empty set. Consequently, the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.展开更多
The quest for an internal state variable constitutive model describing metal deformation is reviewed. First, analogy is drawn between a deformation model and the Ideal Gas Law. The use of strain as a variable in defor...The quest for an internal state variable constitutive model describing metal deformation is reviewed. First, analogy is drawn between a deformation model and the Ideal Gas Law. The use of strain as a variable in deformation models is discussed, and whether strain serves as an internal state variable is considered. A simple experiment that demonstrated path dependence in copper is described. The importance of defining appropriate internal state variables for a constitutive law relates to the ability to accurately model temperature and strain-rate dependencies in deformation simulations.展开更多
文摘We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is investigated. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model for the second triplet state of the system. The investigations show that the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
文摘1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].
文摘This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Failure Time (AFT) model, Cox Proportional Hazards model, and Survival model, we assess the effectiveness of these models in capturing survival rates across varying gender, age groups, and treatment categories. Simulated data was used to fit the models, with model identification criteria (AIC, BIC, and R2) applied for evaluation. Results indicate that the AFT model is particularly sensitive to interaction terms, showing significant effects for older age groups (50 - 60 years) and treatment interaction, while the Cox model provides a more stable fit across all age groups. The Survival model displayed variability, with its performance diminishing when interaction terms were introduced, particularly in older age groups. Overall, while the AFT model captures the complexities of interactions in the data, the Cox model’s stability suggests it may be better suited for general analyses without strong interaction effects. The findings highlight the importance of model selection in survival analysis, especially in complex disease progression scenarios like HIV/AIDS.
基金National Natural Scienceof China(Grant No.52172409)Sichuan Provincial Outstanding Youth Fund of China(Grant No.2022JDJQ0025)。
文摘With the development of the rail transit industry,more attention has been paid to the passive safety of rail vehicles.Structural damage is one of the main failure behaviors in a rail vehicle collision,but it has been paid little attention to in past research.In this paper,the quasi-static fracture experiments of SUS301L-MT under different stress states were carried out.The mechanical fracture properties of this material were studied,and the corresponding finite element simulation accuracy was improved to guide the design of vehicle crashworthiness.Through the tests,the fracture behavior of materials with wide stress triaxiality was obtained,and each specimen’s fracture locations and fracture strains were determined.Parameters of a generalized incremental stress state dependent damage model(GISSMO)of the material were calibrated,and the model’s accuracy was verified with test results from a 45°shear specimen.The GISSMO failure model accurately reflected the fracture characteristics of the material.The mesh dependency of this model was modified and discussed.The results show that the simulation agrees well with experimental data for the force-displacement curve after correction,but the strain distribution needs to be further studied and improved.
基金Project supported by the National Natural Science Foundation of China(Nos.12172204,11772182,11272193,and 10872121)the Program of Shanghai Municipal Education Commission(No.2019-01-07-00-09-E00018)the Natural Science Foundation of Shanghai of China(No.22Z00142)。
文摘DNA nanotubes(DNTs)with user-defined shapes and functionalities have potential applications in many fields.So far,compared with numerous experimental studies,there have been only a handful of models on the mechanical properties of such DNTs.This paper aims at presenting a multiscale model to quantify the correlations among the pre-tension states,tensile properties,encapsulation structures of DNTs,and the surrounding factors.First,by combining a statistical worm-like-chain(WLC)model of single DNA deformation and Parsegian's mesoscopic model of DNA liquid crystal free energy,a multiscale tensegrity model is established,and the pre-tension state of DNTs is characterized theoretically for the first time.Then,by using the minimum potential energy principle,the force-extension curve and tensile rigidity of pre-tension DNTs are predicted.Finally,the effects of the encapsulation structure and surrounding factors on the tensile properties of DNTs are studied.The predictions for the tensile behaviors of DNTs can not only reproduce the existing experimental results,but also reveal that the competition of DNA intrachain and interchain interactions in the encapsulation structures determines the pre-tension states of DNTs and their tensile properties.The changes in the pre-tension states and environmental factors make the monotonic or non-monotonic changes in the tensile properties of DNTs under longitudinal loads.
基金Supported by the National Natural Science Foundation of China(42102154,41922015,42072147)China Postdoctoral Science Foundation(2021M690168)Postdoctoral Innovation Talent Support Program of Shandong Province(SDBX2021004).
文摘A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity of clay minerals(Mc)were established,taking the 1st member of Cretaceous Qingshankou Formation in the northern Songliao Basin as an example.The model and charts were derived from swelling oil experiments performed on naturally evolved kerogens and adsorbed oil experiments on clays(separated from shale core samples).They were constructed on the basis of clarifying the control law of kerogen maturity evolution on its adsorption-swelling capacity,and considering the effect of both the clay pore surface area that occupied by adsorbed oil and formation temperature.The results are obtained in four aspects:(1)For the Qing 1 Member shale,with the increase of maturity,Mk decreases.Given Ro of 0.83%–1.65%,Mk is about 50–250 mg/g.(2)The clay in shale adsorbs asphaltene.Mc is 0.63 mg/m^(2),and about 15%of the clay pore surface is occupied by adsorbed oil.(3)In the low to medium maturity stages,the shale oil adsorption is controlled by organic matter.When Ro>1.3%,the shale oil adsorption capacity is contributed by clay pores.(4)The oil adsorption capacity evaluated on the surface at room temperature is 8%–22%(avg.15%)higher than that is held in the formations.The proposed evaluation model reveals the occurrence mechanisms of shale oils with different maturities,and provides a new insight for estimating the reserves of shale oil under formation temperature conditions.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant No.DUT17GF214)
文摘The remaining useful life(RUL) prediction of mechanical products has been widely studied for online system performance reliability, device remanufacturing, and product safety(safety awareness and safety improvement). These studies incorporated many di erent models, algorithms, and techniques for modeling and assessment. In this paper, methods of RUL assessment are summarized and expounded upon using two major methods: physics model based and data driven based methods. The advantages and disadvantages of each of these methods are deliberated and compared as well. Due to the intricacy of failure mechanism in system, and di culty in physics degradation observation, RUL assessment based on observations of performance variables turns into a science in evaluating the degradation. A modeling method from control systems, the state space model(SSM), as a first order hidden Markov, is presented. In the context of non-linear and non-Gaussian systems, the SSM methodology is capable of performing remaining life assessment by using Bayesian estimation(sequential Monte Carlo). Being e ective for non-linear and non-Gaussian dynamics, the methodology can perform the assessment recursively online for applications in CBM(condition based maintenance), PHM(prognostics and health management), remanufacturing, and system performance reliability. Finally, the discussion raises concerns regarding online sensing data for SSM modeling and assessment of RUL.
文摘A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework of critical state soil mechanics and modified Cam-clay model. The existing model hasbeen generalized to simulate the experimentally observed behavior of unsaturated clays by introducingBishop's stress and suction as independent stress parameters and modifying the hardening rule and yieldcriterion to take into account the role of suction. Also, according to previous studies, an increase intemperature causes a reduction in specific volume. A reduction in suction (wetting) for a given confiningstress may induce an irreversible volumetric compression (collapse). Thus an increase in suction (drying)raises a specific volume i.e. the movement of normal consolidation line (NCL) to higher values of voidratio. However, some experimental data confirm the assumption that this reduction is dependent on thestress level of soil element. A generalized approach considering the effect of stress level on themagnitude of clays thermal dependency in compression plane is proposed in this study. The number ofmodeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitatethe usefulness of model for practical applications. A step-by-step procedure used for parameter calibrationis also described. The model is finally evaluated using a comprehensive set of experimental datafor the thermo-mechanical behavior of unsaturated soils.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - the Whirling Beam. The test results showed some unsteady aerodynamic behavior of the model rotor operating in the vortex-ring state. A very irregular variation of the rotortorque at low rate-of-descent was observed here for the first time. We considered it to be the start of the 'power settling' and determined the critical descent velocity according to this observation. A previous criterion for the vortex-ring state was modified to give a semi-empirical method for predicting the entire vortex-ring state boundary. The computed boundary shows a good correlation with the model test results and the flight experiences.
文摘We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy operator of three-electron systems in the impurity Hubbard model in the quartet state of the system in a <em>v</em>-dimensional lattice. We have reduced the study of the spectrum of the three-electron quartet state operator in the impurity Hubbard model to the study of the spectrum of a simpler operator. We proved the essential spectra of the three-electron systems in the Impurity Hubbard model in the quartet state is the union of no more than six segments, and the discrete spectrum of the system is consists of no more than four eigenvalues.
文摘Mesoscopic characteristics of a clayey soil specimen subjected to macroscopic loading are examined using a medi- cal-use computerized tomography (CT) instrument. Disturbed state concept (DSC) theory is based on the utilization of the hard- ening model. DSC indirectly describes material behavior by claiming that the actual response of the material is expressed in terms of the relative intact (RI) response and the fully adjusted (FA) response. The occurrence of mesoscopic structural changes of material has similarities with the occurrence of a macroscopic response of the material under loadings. In general, the relative changing value of a softening material is three to five times more than that of a hardening material. Whether special zones exist or not in a specimen cross section does not affect the following conclusion: hardening material and softening material show me- chanical differences with CT statistical indices values prominently changing, and the change is related to the superposing of a disturbance factor. A new disturbance factor evolution function is proposed. Thus, mesoscopic statistical indices are introduced to describe macroscopic behavior through the new evolution function. An application of the new evolution function proves the effectiveness of the amalgamation of a macroscopic and a mesoscopic experimental phenomenon measurement methods.
基金This work Was supported by the High Tech Research and Development(863)Program of China under Grant No.2003AA5 16010the Chinese Academy of Science Pilot Project of the National Knowledge Innovation Program under Grant No.KGCX2-SW-305Chinese National Science Fund for Distinguished Young Scholars under Grant No.50125924.
文摘A new analytical method is proposed to analyze the force acting on a rectangular oscillating buoy due to linear waves.In the method a new analytical expression for the diffraction velocity potential is obtained first by use of theeigenfunction expansion method and then the wave excitation force is calculated by use of the known incident wavepotential and the diffraction potential. Compared with the classical analytical method, it can be seen that the presentmethod is simpler for a two-dimensional problem due to the comparable effort needed for the computation ofdiffraction potential and for that of radiated potential. To verify the correctness of the method, a classical example inthe reference is recomputed and the obtained results are in good accordance with those by use of other methods,which shows that the present method is correct.
基金supported by the National Natural Science Foundation of China(Nos.12175100 and 11975132)the Construct Program of the Key Discipline in Hunan Province+3 种基金the Research Foundation of the Education Bureau of Hunan Province,China(No.18A237)the Natural Science Foundation of Hunan Province,China(No.2018JJ2321)the Innovation Group of Nuclear and Particle Physics in USCthe Opening Project of the Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No.2019KFZ10)。
文摘In this study,we systematically investigated the two-proton(2p)radioactivity half-lives from the excited state of nuclei near the proton drip line within the Gamowlike model(GLM)and modified Gamow-like model(MGLM).The calculated results were highly consistent with the theoretical values obtained using the unified fission model[Chin.Phys.C 45,124105(2021)],effective liquid drop model,and generalized liquid drop model[Acta Phys.Sin 71,062301(2022)].Furthermore,utilizing the GLM and MGLM,we predicted the 2p radioactivity halflives from the excited state for some nuclei that are not yet available experimentally.Simultaneously,by analyzing the calculated results from these theoretical models,it was found that the half-lives are strongly dependent on Qand l.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11465016,11674268,and 11764038)
文摘The low-order harmonic generation of hydrogen molecular ion interacting with a linearly polarized laser field has been investigated theoretically by using a simple two-state model. The validity of the two-state model is carefully examined by comparing the harmonic spectra of hydrogen molecular ion obtained from this model with those from the three-dimensional time-dependent Schr¨odinger equation. When combined with the Morlet transform of quantum time-frequency spectrum,the two-state model can be used to study the dynamical origin of the low-order harmonic generation of hydrogen molecular ion driven by low-frequency pulses. In addition, some interesting structures of the time profiles for low order harmonics are obtained.
文摘We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of essential spectrum and discrete spectrum of the systems in the third and fourth doublet states in a <em>v</em>-dimensional lattice is investigated. We prove that the essential spectrum of the system in a third doublet state consists is the union of at most four segments, and discrete spectrum of the system is empty. We show that the essential spectrum of the system in a fourth doublet state consists of the union of at most seven segments, and discrete spectrum of the system consists of no more than one point.
文摘Encouraged by the wide spectrum of novel applications of gas hydrates,e.g.,energy recovery,gas separation,gas storage,gas transportation,water desalination,and hydrogen hydrate as a green energy resource,as well as CO2 capturing,many scientists have focused their attention on investigating this important phenomenon.Of course,from an engineering viewpoint,the mathematical modeling of gas hydrates is of paramount importance,as anticipation of gas hydrate stability conditions is effective in the design and control of industrial processes.Overall,the thermodynamic modeling of gas hydrate can be tackled as an equilibration of three phases,i.e.,liquid,gas,and solid hydrate.The inseparable component in all hydrate systems,water,is highly polar and non-ideal,necessitating the use of more advanced equation of states(EoSs) that take into account more intermolecular forces for thermodynamic modeling of these systems.Motivated by the ever-increasing number of publications on this topic,this study aims to review the application of associating EoSs for the thermodynamic modeling of gas hydrates.Three most important hydrate-based models available in the literature including the van der Waals-Platteeuw(vdW-P) model,Chen-Guo model,and Klauda-Sandler model coupled with and SAFT EoSs were investigated and compared with cubic EoSs.It was concluded that the CPA and SAFT EoSs gave very accurate results for hydrate systems as they take into account the association interactions,which are very crucial in gas hydrate systems in which water,methanol,glycols,and other types of associating compounds are available.Moreover,it was concluded that the CPA EoS is easier to use than the SAFT-type EoSs and our suggestion for the gas hydrate systems is the CPA EoS.
基金The research activity on this topic is still under development in the frame of the ASAMS(Aspetti specialistici e approccio metodologico per progettazione di sottomarini di ultima generazione)project(2019-2022)which has been funded by the Italian MoD–Segredifesa,in collaboration with Fincantieri.
文摘The current design philosophy for submarine hulls,in the preliminary design stage,generally considers as governing limit states material yielding along with various buckling modes.It is common belief that,beyond the design pressure,material yielding of the shell plating should occur first,eventually followed by local buckling,while global buckling currently retains the highest safety factor.On the other hand,in the aeronautical field,in some cases structural components are designed in such a way that local instability may occur within the design loads,being the phenomena inside the material elastic range and not leading to a significant drop in term of stiffness.This paper is aimed at investigating the structural response beyond a set of selected limit states,using nonlinear FE method adopting different initial imperfection models,to provide the designers with new information useful for calibrating safety factors.It was found that both local and global buckling can be considered as ultimate limit states,with a significant sensitivity towards initial imperfection,while material yielding and tripping buckling of frames show a residual structural capacity.In conclusion,it was found that the occurrence of local buckling leads to similar sudden catastrophic consequences as global buckling,with the ultimate strength capacity highly affected by the initial imperfection shape and amplitude.
文摘We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensional lattice. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model. The investigations show that there are such cases: 1) the essential spectrum of the system consists of the union of no more than eight segments, and the discrete spectrum of the system consists of no more than three eigenvalues;2) the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues;3) the essential spectrum of the system consists of the union of no more than three segments, and the discrete spectrum of the system is the empty set. Consequently, the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.
文摘The quest for an internal state variable constitutive model describing metal deformation is reviewed. First, analogy is drawn between a deformation model and the Ideal Gas Law. The use of strain as a variable in deformation models is discussed, and whether strain serves as an internal state variable is considered. A simple experiment that demonstrated path dependence in copper is described. The importance of defining appropriate internal state variables for a constitutive law relates to the ability to accurately model temperature and strain-rate dependencies in deformation simulations.