The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic...The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic finite element method(PD-FEM),and peridynamic boundary element method(PD-BEM),have been proposed.PD-BEM,in particular,outperforms other methods by eliminating spurious boundary softening,efficiently handling infinite problems,and ensuring high computational accuracy.However,the existing PD-BEM is constructed exclusively for bond-based peridynamics(BBPD)with fixed Poisson’s ratio,limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems.In this paper,we address these limitations by introducing the boundary element method(BEM)for ordinary state-based peridynamics(OSPD-BEM).Additionally,we present a crack propagationmodel embeddedwithin the framework ofOSPD-BEM to simulate crack propagations.To validate the effectiveness of OSPD-BEM,we conduct four numerical examples:deformation under uniaxial loading,crack initiation in a double-notched specimen,wedge-splitting test,and threepoint bending test.The results demonstrate the accuracy and efficiency of OSPD-BEM,highlighting its capability to successfully eliminate spurious boundary softening phenomena under varying Poisson’s ratios.Moreover,OSPDBEMsignificantly reduces computational time and exhibits greater consistencywith experimental results compared to PD-MPM.展开更多
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill...In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.展开更多
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th...The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.展开更多
A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface i...A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.展开更多
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T...In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.展开更多
This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary eleme...This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.展开更多
A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten...A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.展开更多
In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method(MDBEM). The str...In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method(MDBEM). The structure consists of two perforated vertical thin barriers creating what can be called a wave absorbing chamber system. The barriers are surface piercing, thereby eliminating wave overtopping. The problem of the interaction of obliquely incident linear waves upon a pair of perforated barriers is first formulated in the context of linear diffraction theory. The resulting boundary integral equation, which is matched with far-field solutions presented in terms of analytical series with unknown coefficients, as well as the appropriate boundary conditions at the free surface, seabed, and barriers, is then solved numerically using MDBEM. Dissipation of the wave energy due to the presence of the perforated barriers is represented by a simple yet effective relation in terms of the porosity parameter appropriate for thin perforated walls. The results are presented in terms of reflection and transmission coefficients. The effects of the incident wave angles, relative water depths, porosities, depths of the walls, and other major parameters of interest are explored.展开更多
In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation ...In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral element method (SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memorysaving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the storage demand is dramatically reduced;therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint inversion problems.展开更多
A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model,...A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso-cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc.SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.展开更多
In this paper, several mathmatical models for the pile- soil interaction are outlined. The Boundary Element Method is one of the very effective methods for the reasonable models of elasticity and elastoplasticity. The...In this paper, several mathmatical models for the pile- soil interaction are outlined. The Boundary Element Method is one of the very effective methods for the reasonable models of elasticity and elastoplasticity. The major of this paper is concerned with the Boundary Element Method for the pile-soil interaction, including general methods and calculating formulation of static and dynamic analysis of the pile and pile groups. Some results of analysis are also given.展开更多
The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed b...The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed boundary value problem based on an Eulerian description at each time step is solved using the higher order boundary element method. The 4th-order Runge–Kutta scheme is adopted to update the free water surface boundary conditions expressed in a Lagrangian formulation. Following completion of the numerical model, the problems of radiation(heave) of water waves by a submerged sphere in finite depth are simulated and the computed results are verified against the published numerical results in order to ensure the effectiveness of the model. The validated numerical model is then applied to simulate the nonlinear wave radiation by a fully submerged vertical circular cylinder undergoing various forced sinusoidal motion in otherwise still conditions. The numerical results are obtained for a series of wave radiation problems; the completely submerged cylinder is placed in surging, heaving and combined heave-pitching motions with different drafts, amplitudes and frequencies. The corresponding numerical results of the cylinder motions, wave profiles, and hydrodynamic forces are then compared and explained for all the cases.展开更多
The linear boundary element method for electromagnetic fields is taken to deal withthe excitation of a non-symmetrical electric dipole in a lossy half space.A simple and practicalalgorithm is offered to the Measuremen...The linear boundary element method for electromagnetic fields is taken to deal withthe excitation of a non-symmetrical electric dipole in a lossy half space.A simple and practicalalgorithm is offered to the Measurement While Drilling with Electromagnetic waves(EM-MWD),The calculation for two models under the low frequency limits are compared with the experimentsand the results calculated with the theory of stationary current fields.展开更多
Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a co...Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a composite coarse-fine grid or as a global fine grid.One cheaper way of obtaining the composite grid solution is the use of the local defect correction technique.The technique is an algorithm that combines a global coarse grid solution and a local fine grid solution in an iterative way to estimate the solution on the corresponding composite grid.The algorithm is relatively new and its convergence properties have not been studied for the boundary element method.In this paper the objective is to determine convergence properties of the algorithm for the boundary element method.First,we formulate the algorithm as a fixed point iterative scheme,which has also not been done before for the boundary element method,and then study the properties of the iteration matrix.Results show that we can always expect convergence.Therefore,the algorithm opens up a real alternative for application in the boundary element method for problems with localised regions of high activity.展开更多
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat...In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.展开更多
The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix ar...The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4π rule. The solid angle for the open surface is treated in direct method based on its definition. Several kinds of configurations for the bubbles and free surface have been investigated. The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface. The bubble dynamics and their interactions have close relation with the standoff distances, buoyancy parameters and initial sizes of bubbles. Completely different bubble shapes, free surface motions, jetting patterns and pressure distributions under different parameters can be observed in our model, as demon- strated in our calculation results.展开更多
The special formulation that allows an accurate and efficient solution to the heat transfer problems within fin assemblies with very large aspect ratios has been developed in this paper Numerically,it consists of the ...The special formulation that allows an accurate and efficient solution to the heat transfer problems within fin assemblies with very large aspect ratios has been developed in this paper Numerically,it consists of the boundary element method in the wall region and the analytical solution in the fin region This modified BEM makes tractable a large class of heat transfer problems in the long and thin domains which are frequently encountered in practice.展开更多
A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of ...A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of the interior points very close to boundary were categorized into two forms. The factor leading to the singularity was transformed out of the integral representations with integration by parts, so non-singular regularized formulas were presented for the two forms of integrals. Furthermore, quadratic elements are used in addition to linear ones. The quadratic element very close to the internal point can be divided into two linear ones, so that the algorithm is still valid. Numerical examples demonstrate the effectiveness and accuracy of this algorithm. Especially for problems with curved boundaries, the combination of quadratic elements and linear elements can give more accurate results.展开更多
This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure d...This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure distribution in gear drive through theperturbation of a cubic order geometry,there by greatly bringing down both computationwork volume and cost and providing a powerful tool for engineering study on the effectof errors on structural strength.展开更多
基金supported by the National Key R&D Program of China(2020YFA0710500).
文摘The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic finite element method(PD-FEM),and peridynamic boundary element method(PD-BEM),have been proposed.PD-BEM,in particular,outperforms other methods by eliminating spurious boundary softening,efficiently handling infinite problems,and ensuring high computational accuracy.However,the existing PD-BEM is constructed exclusively for bond-based peridynamics(BBPD)with fixed Poisson’s ratio,limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems.In this paper,we address these limitations by introducing the boundary element method(BEM)for ordinary state-based peridynamics(OSPD-BEM).Additionally,we present a crack propagationmodel embeddedwithin the framework ofOSPD-BEM to simulate crack propagations.To validate the effectiveness of OSPD-BEM,we conduct four numerical examples:deformation under uniaxial loading,crack initiation in a double-notched specimen,wedge-splitting test,and threepoint bending test.The results demonstrate the accuracy and efficiency of OSPD-BEM,highlighting its capability to successfully eliminate spurious boundary softening phenomena under varying Poisson’s ratios.Moreover,OSPDBEMsignificantly reduces computational time and exhibits greater consistencywith experimental results compared to PD-MPM.
基金sponsored by the Graduate Student Research and Innovation Fund of Xinyang Normal University under No.2024KYJJ012.
文摘In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51809209 and 11702244)the Open Fund of Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2021SS04).
文摘The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.
基金supported by the Open Project of Key Laboratory of Aerospace EDLA,CASC(No.EDL19092208)。
文摘A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.
基金sponsored by Natural Science Foundation of Henan under Grant No.222300420498.
文摘In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.
文摘This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52271276,52271319,and 52201364)the Natural Science Foundation of Jiangsu Province (Grant No.BK20201006)。
文摘A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.
文摘In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method(MDBEM). The structure consists of two perforated vertical thin barriers creating what can be called a wave absorbing chamber system. The barriers are surface piercing, thereby eliminating wave overtopping. The problem of the interaction of obliquely incident linear waves upon a pair of perforated barriers is first formulated in the context of linear diffraction theory. The resulting boundary integral equation, which is matched with far-field solutions presented in terms of analytical series with unknown coefficients, as well as the appropriate boundary conditions at the free surface, seabed, and barriers, is then solved numerically using MDBEM. Dissipation of the wave energy due to the presence of the perforated barriers is represented by a simple yet effective relation in terms of the porosity parameter appropriate for thin perforated walls. The results are presented in terms of reflection and transmission coefficients. The effects of the incident wave angles, relative water depths, porosities, depths of the walls, and other major parameters of interest are explored.
基金financial support for this work contributed by the National Key Research and Development Program of China (grant numbers 2016YFC0600101 and 2016YFC 0600201)the National Natural Science Foundation of China (grant numbers 41874065, 41604076, 41674102, 41674095, 41522401, 41574082, and 41774097)
文摘In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral element method (SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memorysaving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the storage demand is dramatically reduced;therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint inversion problems.
基金supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00106)the National Natural Science Foundation of China (Grant Nos. 10674006, 81171421, and 61101046)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z238)
文摘A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso-cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc.SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.
文摘In this paper, several mathmatical models for the pile- soil interaction are outlined. The Boundary Element Method is one of the very effective methods for the reasonable models of elasticity and elastoplasticity. The major of this paper is concerned with the Boundary Element Method for the pile-soil interaction, including general methods and calculating formulation of static and dynamic analysis of the pile and pile groups. Some results of analysis are also given.
文摘The higher-order boundary element method is applied to the numerical simulation of nonlinear waves radiated by a forced oscillating fully submerged vertical circular cylinder. In this time-domain approach, the mixed boundary value problem based on an Eulerian description at each time step is solved using the higher order boundary element method. The 4th-order Runge–Kutta scheme is adopted to update the free water surface boundary conditions expressed in a Lagrangian formulation. Following completion of the numerical model, the problems of radiation(heave) of water waves by a submerged sphere in finite depth are simulated and the computed results are verified against the published numerical results in order to ensure the effectiveness of the model. The validated numerical model is then applied to simulate the nonlinear wave radiation by a fully submerged vertical circular cylinder undergoing various forced sinusoidal motion in otherwise still conditions. The numerical results are obtained for a series of wave radiation problems; the completely submerged cylinder is placed in surging, heaving and combined heave-pitching motions with different drafts, amplitudes and frequencies. The corresponding numerical results of the cylinder motions, wave profiles, and hydrodynamic forces are then compared and explained for all the cases.
文摘The linear boundary element method for electromagnetic fields is taken to deal withthe excitation of a non-symmetrical electric dipole in a lossy half space.A simple and practicalalgorithm is offered to the Measurement While Drilling with Electromagnetic waves(EM-MWD),The calculation for two models under the low frequency limits are compared with the experimentsand the results calculated with the theory of stationary current fields.
文摘Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a composite coarse-fine grid or as a global fine grid.One cheaper way of obtaining the composite grid solution is the use of the local defect correction technique.The technique is an algorithm that combines a global coarse grid solution and a local fine grid solution in an iterative way to estimate the solution on the corresponding composite grid.The algorithm is relatively new and its convergence properties have not been studied for the boundary element method.In this paper the objective is to determine convergence properties of the algorithm for the boundary element method.First,we formulate the algorithm as a fixed point iterative scheme,which has also not been done before for the boundary element method,and then study the properties of the iteration matrix.Results show that we can always expect convergence.Therefore,the algorithm opens up a real alternative for application in the boundary element method for problems with localised regions of high activity.
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
文摘In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.
基金supported by the Funds for Creative Research Groups of China (50921001)the State Key Development Program for Basic Research of China (2010CB832704)
文摘The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4π rule. The solid angle for the open surface is treated in direct method based on its definition. Several kinds of configurations for the bubbles and free surface have been investigated. The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface. The bubble dynamics and their interactions have close relation with the standoff distances, buoyancy parameters and initial sizes of bubbles. Completely different bubble shapes, free surface motions, jetting patterns and pressure distributions under different parameters can be observed in our model, as demon- strated in our calculation results.
文摘The special formulation that allows an accurate and efficient solution to the heat transfer problems within fin assemblies with very large aspect ratios has been developed in this paper Numerically,it consists of the boundary element method in the wall region and the analytical solution in the fin region This modified BEM makes tractable a large class of heat transfer problems in the long and thin domains which are frequently encountered in practice.
文摘A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of the interior points very close to boundary were categorized into two forms. The factor leading to the singularity was transformed out of the integral representations with integration by parts, so non-singular regularized formulas were presented for the two forms of integrals. Furthermore, quadratic elements are used in addition to linear ones. The quadratic element very close to the internal point can be divided into two linear ones, so that the algorithm is still valid. Numerical examples demonstrate the effectiveness and accuracy of this algorithm. Especially for problems with curved boundaries, the combination of quadratic elements and linear elements can give more accurate results.
文摘This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure distribution in gear drive through theperturbation of a cubic order geometry,there by greatly bringing down both computationwork volume and cost and providing a powerful tool for engineering study on the effectof errors on structural strength.