The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks,...Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-t...To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires.展开更多
Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining peri...Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.展开更多
The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the ...The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.展开更多
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structur...For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.展开更多
Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent ...Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.展开更多
This paper discusses the enviromental characteristics of carbonaceous mudstone and mudstone (coal-measure mudstone in short) of the Early and Middle Jurassic in the Turpan-Hami basin, which were formed in swamps. Thro...This paper discusses the enviromental characteristics of carbonaceous mudstone and mudstone (coal-measure mudstone in short) of the Early and Middle Jurassic in the Turpan-Hami basin, which were formed in swamps. Through the organic facies study of the coal-measure mudstone in this area, the authors clarify that the flowing-water swamp is the most advanced organic facies belt. Furthermore, according to the practical materials of coal-measure mudstone in the area and with the evaluation criteria of lacustrine mudstone in the past, the authors have established the integrated symbol systems from the abundance of organic matter and the type of organic matter, which can be used in the source rock evaluation of the coal-measure mudstone.展开更多
To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the ...To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst.展开更多
The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal c...The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.展开更多
Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditio...Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage.展开更多
In the last few decades, the utilization of coal to generate electricity was rapidly increasing. Consequently, the production of coal combustion ash (CCA) as a by-product of coal utilization as primary energy sources ...In the last few decades, the utilization of coal to generate electricity was rapidly increasing. Consequently, the production of coal combustion ash (CCA) as a by-product of coal utilization as primary energy sources was increased. The physical and geochemical characteristics of CCA were site-specific which determined by both inherent coal-source quality and combustion condition. This study was intended to characterize the physical, chemical and mineralogical properties of a coal-combustion ash (CCA) from a site specific power plant and evaluate the leachate characteristic of some scenario on the co-placement of CCA with coal-mine waste rock. The physical properties such as specific gravity, dry density, porosity and particle size distribution were determined. Chemically, the CCA sample is enriched mainly in silica, aluminum, iron, and magnesium along with a little amount of calcium and sodium which includes in the class C fly ash category. Moreover, it is found that the mineral phases identified in the sample were quartz, mullite, aragonite, magnetite, hematite, and spinel. Co-placement experiment with mudstone waste rock shows that the CCA, though it has limited contribution to the decreasing permeability, has important contributed to increase the quality of leachate through releasing higher alkalinity. Moreover, addition of CCA did not affect to the increase of the trace metal element in the leachate. Hence, utilization of CCA by co-placement with coal mine waste rock in the dumping area is visible to be implemented.展开更多
Accurate volume calculation of each individual landslide triggered by strong historical earthquakes can help understand the characteristics of the typical earthquake-induced landslides,thus providing significant infor...Accurate volume calculation of each individual landslide triggered by strong historical earthquakes can help understand the characteristics of the typical earthquake-induced landslides,thus providing significant information for the modification of the focal parameters of historical earthquakes.In this study,we select one rock fall and three loess landslides triggered by the 1556 AD Huaxian M8⅟earthquake,compute their volumes using the low-altitude high-precision Unmanned Aerial Vehicle(UAV)photogrammetry and landslide profile restoration methods.The results show that:①the whole influencing area of the Huangjiagou Rock Fall is approximately 3.03×105 m2 and the area of the collapsed rock accumulated at the slope foot is 3.33×104 m2,accounting for approximately 10%of the entire influencing range.However,the estimated volume of the collapsed rock is only 0.699×106 m3,indicating a rock fall with large influencing range but limited collapsed rock;②the geological form of thethree loess landslides are preserved intactly,with volumes of 0.283×108 m3,0.074×108 m3,and 0.377×108 m3.These important geological hazard relics reflect the strong vibrations and severe casualties in the meizoseismal area;③loess landslides are the key reason of the serious death toll in the hilly-gully loess area.Our new method can be used to estimate the influencing area and the actual volume of each individual landslide,and rationally evaluate the role of earthquake landslides in the disaster.In addition,quantitative research on secondary disasters triggered by strong historical earthquakes is beneficial for understanding the surface process and focal parameters of the earthquakes.展开更多
The thermal conductivity of rock is an important parameter for the deep mine and the geothermal development. It is often not possible to measure the thermal conductivity of the rocks present in the deep strata, and th...The thermal conductivity of rock is an important parameter for the deep mine and the geothermal development. It is often not possible to measure the thermal conductivity of the rocks present in the deep strata, and the usual approach is to calculate thermal conductivity including mineralogy and porosity. The compositions of core samples from the MID01 borehole in the Bjorko area were determined, and the mineral composition was classified. The calculation of the thermal conductivity of rock in the borehole was carried out, and the main factors for the thermal conductivity of rock were analyzed. The results show that the calculated thermal conductivity of rock is reliable and useful for the design and calculation of geothermal development in the Bjorko area.展开更多
The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-g...The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments.The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation.Therefore,the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression.Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression.In this regard,the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies,which all varied in carbon and hydrogen content.The coal measure source rocks in the carbon-and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential,whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield.These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope,both representing promising sources for oil and gas exploration.展开更多
To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 ...To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 coal outcrops. Additionally, detailed joint measurements of underground coal seams were taken at two coal mines. This study investigated the effects of seam thickness, lithology, and structure on joint development and established the relationship between joint development of coal and rock seams, which allowed predictions of predominant joint densities for the No.5 coal seam in the southeastern margin of the Ordos basin. The results show that outcrop and underground coal seams exhibit the same joint systems as rock seams. The joints are mainly upright. Predominant joints strike 55° on average, followed by joints striking 320°. The joint density of the coal seam is 18.7–22.5 times that of the sandstone seam at the same thickness. The predominant joint density of the No.5 coal seam, controlled by the structure, is 4–20 joints per meter. Joint densities exhibit high values at intersecting areas of faults and folds and decrease values in structurally stable areas. The permeability increases exponentially with increasing density of the predominant joints.展开更多
In mining the left-over coal above the gob,stope wall rock of mining area have hard limestone.through field observation,the face-contacted block structure was found in rocks between coal seams to mine the left-over co...In mining the left-over coal above the gob,stope wall rock of mining area have hard limestone.through field observation,the face-contacted block structure was found in rocks between coal seams to mine the left-over coal above the gob.In order to probe into the movement law of rock strata and strata control measures,it is very important to identify the mobile block in face-contacted block structure of rocks between coal seams.This paper relies on the thought of block theory to establish appropriate parameter matrix and figure out its discrimination matrix in view of the fact that the block in face-contacted block structure has high intensity and stiffness,the展开更多
Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Throug...Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Through stress analysis of the element with variable strength and stiffness extracted from the strong-weak interface, the tri-axial compressive strength of the weak body and strong body near the interface as well as the areas away from the contact surface was found. Then, on the basis of three-dimensional fast Lagrangian method of continua and strain softening constitutive model composed of Coulomb-Mohr shear failure with tensile cut-off, stress and strain relationship of the four three-body combined models were analyzed under different confining pressures by numerical simulation. Finally, the different features of local shear zones and plastic failure areas of the four different models and their development trend with increasing confining pressure were discussed. The results show that additional stresses are derived due to the lateral deformation constraints near the strong-weak interface area, which results in the strength increasing in weak body and strength decreasing in strong body. The weakly consolidated soft rock and coal cementation exhibit significant strain softening behavior and bear compound tension-shear failure under uni-axial compression. With the increase of confining pressure, the tensile failure disappears from the model, and the failure type of composed model changes to local shear failure with different number of shearing bands and plastic failure zones. This work shows important guiding significance for the mechanism study of seismic, rock burst, and coal bump.展开更多
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
基金provided by the independent research subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No. CXZZ13_0947)
文摘Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金supported by the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(Grant No.2011DA105287-zd201804)Jiangxi Provincial Natural Science Foundation of China(Grant No.20232BAB214036).
文摘To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires.
文摘Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.
基金supported by the Special Funding Projects of Sanjin Scholars” Supporting Plan (No. 2050205)the National Key Research Projects (No. 2016YFC0600701)Ordinary University Graduate Student Scientific Research Innovation Projects of Jiangsu Province of China (No. KYLX16_0564)
文摘The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
基金Beijing Outstanding Young Scientist Program(BJJWZYJH01201911413037)the projects supported by National Natural Science Foundation of China(Grants Nos.41877257,51622404,and 51974117)Shaanxi Coal Group Key Project(2018SMHKJ-A-J-03)。
文摘For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.
基金Supported by the Project of National Basic Research Program of China(973 Program)(2005CB221505)the Significant Project of National Natural Science Fund(50534080/E041503)the Project of Coal Mine Gas and Fire Hazard Prevention Major Lab in Henan Province(HKLGF200508)
文摘Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.
文摘This paper discusses the enviromental characteristics of carbonaceous mudstone and mudstone (coal-measure mudstone in short) of the Early and Middle Jurassic in the Turpan-Hami basin, which were formed in swamps. Through the organic facies study of the coal-measure mudstone in this area, the authors clarify that the flowing-water swamp is the most advanced organic facies belt. Furthermore, according to the practical materials of coal-measure mudstone in the area and with the evaluation criteria of lacustrine mudstone in the past, the authors have established the integrated symbol systems from the abundance of organic matter and the type of organic matter, which can be used in the source rock evaluation of the coal-measure mudstone.
文摘To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst.
文摘The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.
基金Supported by the National Major Fundamental Research Program of China(973 Project)(2005CB221503)National Science Foundation of China(50544010)
文摘Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage.
文摘In the last few decades, the utilization of coal to generate electricity was rapidly increasing. Consequently, the production of coal combustion ash (CCA) as a by-product of coal utilization as primary energy sources was increased. The physical and geochemical characteristics of CCA were site-specific which determined by both inherent coal-source quality and combustion condition. This study was intended to characterize the physical, chemical and mineralogical properties of a coal-combustion ash (CCA) from a site specific power plant and evaluate the leachate characteristic of some scenario on the co-placement of CCA with coal-mine waste rock. The physical properties such as specific gravity, dry density, porosity and particle size distribution were determined. Chemically, the CCA sample is enriched mainly in silica, aluminum, iron, and magnesium along with a little amount of calcium and sodium which includes in the class C fly ash category. Moreover, it is found that the mineral phases identified in the sample were quartz, mullite, aragonite, magnetite, hematite, and spinel. Co-placement experiment with mudstone waste rock shows that the CCA, though it has limited contribution to the decreasing permeability, has important contributed to increase the quality of leachate through releasing higher alkalinity. Moreover, addition of CCA did not affect to the increase of the trace metal element in the leachate. Hence, utilization of CCA by co-placement with coal mine waste rock in the dumping area is visible to be implemented.
基金Received on April 29th,2020revised on June 5th,2020.This project is sponsored by Fundamental Scientific Research Fund in the IEF,CEA(2017IES010102,2019IEF0201,2017IES010101,)+1 种基金the National Natural Science Foundation of China(42072248)the Seismic Active Fault Exploration Project based on Highresolution Remote Sensing Interpretation Technology by Department of Earthquake Damage Defense,CEA(15230003).
文摘Accurate volume calculation of each individual landslide triggered by strong historical earthquakes can help understand the characteristics of the typical earthquake-induced landslides,thus providing significant information for the modification of the focal parameters of historical earthquakes.In this study,we select one rock fall and three loess landslides triggered by the 1556 AD Huaxian M8⅟earthquake,compute their volumes using the low-altitude high-precision Unmanned Aerial Vehicle(UAV)photogrammetry and landslide profile restoration methods.The results show that:①the whole influencing area of the Huangjiagou Rock Fall is approximately 3.03×105 m2 and the area of the collapsed rock accumulated at the slope foot is 3.33×104 m2,accounting for approximately 10%of the entire influencing range.However,the estimated volume of the collapsed rock is only 0.699×106 m3,indicating a rock fall with large influencing range but limited collapsed rock;②the geological form of thethree loess landslides are preserved intactly,with volumes of 0.283×108 m3,0.074×108 m3,and 0.377×108 m3.These important geological hazard relics reflect the strong vibrations and severe casualties in the meizoseismal area;③loess landslides are the key reason of the serious death toll in the hilly-gully loess area.Our new method can be used to estimate the influencing area and the actual volume of each individual landslide,and rationally evaluate the role of earthquake landslides in the disaster.In addition,quantitative research on secondary disasters triggered by strong historical earthquakes is beneficial for understanding the surface process and focal parameters of the earthquakes.
基金Project(50490274) supported by the National Natural Science Foundation of China project supported by the PostdoctoralScience Foundation of China and Bjorko project supported by the Energy Agency of Sweden
文摘The thermal conductivity of rock is an important parameter for the deep mine and the geothermal development. It is often not possible to measure the thermal conductivity of the rocks present in the deep strata, and the usual approach is to calculate thermal conductivity including mineralogy and porosity. The compositions of core samples from the MID01 borehole in the Bjorko area were determined, and the mineral composition was classified. The calculation of the thermal conductivity of rock in the borehole was carried out, and the main factors for the thermal conductivity of rock were analyzed. The results show that the calculated thermal conductivity of rock is reliable and useful for the design and calculation of geothermal development in the Bjorko area.
基金The National Science and Technology Major Project under contract No.2016ZX05024-002the Exploration Project of China National Offshore Oil Corporation under contract Nos 2018OT-KT-SC-9 and 2019KT-SC-10。
文摘The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments.The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation.Therefore,the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression.Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression.In this regard,the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies,which all varied in carbon and hydrogen content.The coal measure source rocks in the carbon-and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential,whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield.These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope,both representing promising sources for oil and gas exploration.
基金Financial support for this work, provided by the National Science and Technology Major Project (No. 2011ZX05034-001)
文摘To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 coal outcrops. Additionally, detailed joint measurements of underground coal seams were taken at two coal mines. This study investigated the effects of seam thickness, lithology, and structure on joint development and established the relationship between joint development of coal and rock seams, which allowed predictions of predominant joint densities for the No.5 coal seam in the southeastern margin of the Ordos basin. The results show that outcrop and underground coal seams exhibit the same joint systems as rock seams. The joints are mainly upright. Predominant joints strike 55° on average, followed by joints striking 320°. The joint density of the coal seam is 18.7–22.5 times that of the sandstone seam at the same thickness. The predominant joint density of the No.5 coal seam, controlled by the structure, is 4–20 joints per meter. Joint densities exhibit high values at intersecting areas of faults and folds and decrease values in structurally stable areas. The permeability increases exponentially with increasing density of the predominant joints.
文摘In mining the left-over coal above the gob,stope wall rock of mining area have hard limestone.through field observation,the face-contacted block structure was found in rocks between coal seams to mine the left-over coal above the gob.In order to probe into the movement law of rock strata and strata control measures,it is very important to identify the mobile block in face-contacted block structure of rocks between coal seams.This paper relies on the thought of block theory to establish appropriate parameter matrix and figure out its discrimination matrix in view of the fact that the block in face-contacted block structure has high intensity and stiffness,the
基金Project(51174128)supported by the National Natural Science Foundation of ChinaProject(20123718110007)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Through stress analysis of the element with variable strength and stiffness extracted from the strong-weak interface, the tri-axial compressive strength of the weak body and strong body near the interface as well as the areas away from the contact surface was found. Then, on the basis of three-dimensional fast Lagrangian method of continua and strain softening constitutive model composed of Coulomb-Mohr shear failure with tensile cut-off, stress and strain relationship of the four three-body combined models were analyzed under different confining pressures by numerical simulation. Finally, the different features of local shear zones and plastic failure areas of the four different models and their development trend with increasing confining pressure were discussed. The results show that additional stresses are derived due to the lateral deformation constraints near the strong-weak interface area, which results in the strength increasing in weak body and strength decreasing in strong body. The weakly consolidated soft rock and coal cementation exhibit significant strain softening behavior and bear compound tension-shear failure under uni-axial compression. With the increase of confining pressure, the tensile failure disappears from the model, and the failure type of composed model changes to local shear failure with different number of shearing bands and plastic failure zones. This work shows important guiding significance for the mechanism study of seismic, rock burst, and coal bump.