Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the thr...Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the three, followed by August and December. The Tws differences among walls with different orientation were higher in April and December when the weather tends to be sunny, and lower in August with more cloudy days in the time. In April and August, Tws of E-wall was the highest, followed by S- and N-wall. But in December Tws of S-wall might be sometimes higher than E one. Diurnal range of internal Tws was usually smaller than that of the external, with also a time lag for the occurrence of its maximum and minimum. The results can serve as a basis for further research on building microclimate and urban architecture designs. It also gives suggestions for similar studies in other areas.展开更多
This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimat...This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.展开更多
The electronic properties(Fermi surface,band structure,and density of states(DOS)) of Al-based alloys AlM3(M=Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method w...The electronic properties(Fermi surface,band structure,and density of states(DOS)) of Al-based alloys AlM3(M=Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation(GGA).The structural parameters and elastic constants are evaluated and compared with other available data.Also,the pressure dependences of mechanical properties of the compounds are studied.The temperature dependence of adiabatic bulk modulus,Debye temperature,specific heat,thermal expansion coefficient,entropy,and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K-100 K.The parameters of optical properties(dielectric functions,refractive index,extinction coefficient,absorption spectrum,conductivity,energy-loss spectrum,and reflectivity) of the compounds are calculated and discussed for the first time.The reflectivities of the materials are quite high in the IR-visible-UV region up to ~ 15 eV,showing that they promise to be good coating materials to avoid solar heating.Some of the properties are also compared with those of the Al-based Ni3 Al compound.展开更多
In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were develop...In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.展开更多
In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several layers in the vertical direction,and some energy balance equations were developed...In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several layers in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m)and a large area(with a horizontal scale of more than 1 000 m)in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.展开更多
Based on analysis of surface average temperature and burn degree, this article obtains the threshold temperature of surface burn in grinding titanium alloy with cup wheels. Meanwhile, the impact of the burn degree on ...Based on analysis of surface average temperature and burn degree, this article obtains the threshold temperature of surface burn in grinding titanium alloy with cup wheels. Meanwhile, the impact of the burn degree on the metallographic structure of workpiece surface and metallurgical phase transformations is investigated. In order to reduce the grinding temperature and improve the grinding efficiency, a self-inhaling structure cup segmented wheel is developed to generate internal cooling effect. The internal cooling technology is compared with traditional cooling conditions in the grinding experiments on TC4 (Ti-6Al-4V). The results indicate that the self-inhaling internal cooling wheel can reduce the grinding surface temperature by 30% or more, and the grinding efficiency doubles. Utilizing water-based semi-synthetic coolant, the segmented wheel with the self-inhaling structure can further reduce the grinding temperature by about 50%.展开更多
A joint statistical-dynamical method addressing both the internal decadal variability and effect of anthropogenic forcing was developed to predict the decadal components of East Asian surface air temperature(EATs)for ...A joint statistical-dynamical method addressing both the internal decadal variability and effect of anthropogenic forcing was developed to predict the decadal components of East Asian surface air temperature(EATs)for three decades(2010–2040).As previous studies have revealed that the internal variability of EATs(EATs_int)is influenced mainly by the ocean,we first analyzed the lead-lag connections between EATs_int and three sea surface temperature(SST)multidecadal modes using instrumental records from 1901 to 1999.Based on the lead-lag connections,a multiple linear regression was constructed with the three SST modes as predictors.The hindcast for the years from 2000 to 2005 indicated the regression model had high skill in simulating the observational EATs_int.Therefore,the prediction for EATs_int(Re_EATs_int)was obtained by the regression model based on quasi-periods of the decadal oceanic modes.External forcing from greenhouse gases is likely associated with global warming.Using monthly global land surface air temperature from historical and projection simulations under the Representative Concentration Pathway(RCP)4.5 scenario of 19 Coupled General Circulation Models participating in the fifth phase of the Coupled Model Intercomparison Project(CMIP5),we predicted the curve of EATs(EATs_trend)relative to1970–1999 by a second-order fit.EATs_int and EATs_trend were combined to form the reconstructed EATs(Re_EATs).It was expected that a fluctuating evolution of Re_EATs would decrease slightly from 2015 to 2030 and increase gradually thereafter.Compared with the decadal prediction in CMIP5 models,Re_EATs was qualitatively in agreement with the predictions of most of the models and the multi-model ensemble mean,indicating that the joint statistical-dynamical approach for EAT is rational.展开更多
基金Key project from the Natural Science Foundation of China (59836250)
文摘Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the three, followed by August and December. The Tws differences among walls with different orientation were higher in April and December when the weather tends to be sunny, and lower in August with more cloudy days in the time. In April and August, Tws of E-wall was the highest, followed by S- and N-wall. But in December Tws of S-wall might be sometimes higher than E one. Diurnal range of internal Tws was usually smaller than that of the external, with also a time lag for the occurrence of its maximum and minimum. The results can serve as a basis for further research on building microclimate and urban architecture designs. It also gives suggestions for similar studies in other areas.
文摘This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.
文摘The electronic properties(Fermi surface,band structure,and density of states(DOS)) of Al-based alloys AlM3(M=Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation(GGA).The structural parameters and elastic constants are evaluated and compared with other available data.Also,the pressure dependences of mechanical properties of the compounds are studied.The temperature dependence of adiabatic bulk modulus,Debye temperature,specific heat,thermal expansion coefficient,entropy,and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K-100 K.The parameters of optical properties(dielectric functions,refractive index,extinction coefficient,absorption spectrum,conductivity,energy-loss spectrum,and reflectivity) of the compounds are calculated and discussed for the first time.The reflectivities of the materials are quite high in the IR-visible-UV region up to ~ 15 eV,showing that they promise to be good coating materials to avoid solar heating.Some of the properties are also compared with those of the Al-based Ni3 Al compound.
基金Project(50808083) supported by the National Natural Science Foundation of China
文摘In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.
基金Supported by National Natural Science Foundation of China(50538040,50720165805,50808083)the 111 project(111-2-13)State Key Laboratory of Subtropical Building(2008ZB14))
文摘In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several layers in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m)and a large area(with a horizontal scale of more than 1 000 m)in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.
基金National Science and Technology Major Project (2009ZX04001-141)Joint Construction Project of Beijing Municipal Commission of Education
文摘Based on analysis of surface average temperature and burn degree, this article obtains the threshold temperature of surface burn in grinding titanium alloy with cup wheels. Meanwhile, the impact of the burn degree on the metallographic structure of workpiece surface and metallurgical phase transformations is investigated. In order to reduce the grinding temperature and improve the grinding efficiency, a self-inhaling structure cup segmented wheel is developed to generate internal cooling effect. The internal cooling technology is compared with traditional cooling conditions in the grinding experiments on TC4 (Ti-6Al-4V). The results indicate that the self-inhaling internal cooling wheel can reduce the grinding surface temperature by 30% or more, and the grinding efficiency doubles. Utilizing water-based semi-synthetic coolant, the segmented wheel with the self-inhaling structure can further reduce the grinding temperature by about 50%.
基金supported by the National Natural Science Foundation of China(Grant Nos.41375085,41421004)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05090406)
文摘A joint statistical-dynamical method addressing both the internal decadal variability and effect of anthropogenic forcing was developed to predict the decadal components of East Asian surface air temperature(EATs)for three decades(2010–2040).As previous studies have revealed that the internal variability of EATs(EATs_int)is influenced mainly by the ocean,we first analyzed the lead-lag connections between EATs_int and three sea surface temperature(SST)multidecadal modes using instrumental records from 1901 to 1999.Based on the lead-lag connections,a multiple linear regression was constructed with the three SST modes as predictors.The hindcast for the years from 2000 to 2005 indicated the regression model had high skill in simulating the observational EATs_int.Therefore,the prediction for EATs_int(Re_EATs_int)was obtained by the regression model based on quasi-periods of the decadal oceanic modes.External forcing from greenhouse gases is likely associated with global warming.Using monthly global land surface air temperature from historical and projection simulations under the Representative Concentration Pathway(RCP)4.5 scenario of 19 Coupled General Circulation Models participating in the fifth phase of the Coupled Model Intercomparison Project(CMIP5),we predicted the curve of EATs(EATs_trend)relative to1970–1999 by a second-order fit.EATs_int and EATs_trend were combined to form the reconstructed EATs(Re_EATs).It was expected that a fluctuating evolution of Re_EATs would decrease slightly from 2015 to 2030 and increase gradually thereafter.Compared with the decadal prediction in CMIP5 models,Re_EATs was qualitatively in agreement with the predictions of most of the models and the multi-model ensemble mean,indicating that the joint statistical-dynamical approach for EAT is rational.