Electricity and magnetism and electromagnetic induction are phenomena that can be perceived by people. But their interpretation and theoretical study took a long time. The theoretical research on electricity began wit...Electricity and magnetism and electromagnetic induction are phenomena that can be perceived by people. But their interpretation and theoretical study took a long time. The theoretical research on electricity began with the discovery of Coulomb’s law in 1785, while the theoretical research on magnetism began with the discovery of Oersted’s Law in 1820. From the 1850s to the 1870s, Maxwell summarized a set of theoretical equations for electromagnetism based on some laws of predecessors. However, this set of equations contains a few statistical relationships and empirical concepts, so it is difficult to explain the physical nature of electromagnetic phenomena and principles. This paper explained that the macro phenomenon of electricity is the separation of unlike charges of new electrons produced by the orthogonal collision of old particles under the action of external forces. The physical nature of magnetism is the potential energy (magnetic energy) and information associated with the overall orientation of the moving electrons solidly recorded in the material. The physical principle of electromagnetic induction describes how change in electric current intensity generates change in magnetic intensity and vice versa through orthogonal interaction of ordered electrons. This theoretical interpretation does not require the concepts of traditional electromagnetic forces, electromagnetic fields, magnetic moments, and magnetic domains.展开更多
When considering electromagnetism, the unit of the Ammeter’s measurement should be limited to its proper unit in “Watt/Volt” which is, according to physical principles, the division quotient of the measured electri...When considering electromagnetism, the unit of the Ammeter’s measurement should be limited to its proper unit in “Watt/Volt” which is, according to physical principles, the division quotient of the measured electrical power by its electrical potential. However, the Ammeter’s reading has also a traditional definition as the rate of flow of electric charges whose unit is “Ampere”. According to recent studies that define the electric charge as energy possessing an electric potential, such traditional definition is wrong as the Ammeter’s reading should, then, has the unit “Watt”. Such duality of the Ammeter’s reading is due to the wrong definition of electric charges as electrons and insertion of the “Ampere”, as a wrong unit of the flow of electric charges. This duality represents a “redundancy” in electromagnetism as the proper Ammeter’s reading, in Watt/Volt, is a unit of entropy of the flowing energy charges. Such redundancy led to further redundancies in the field of electromagnetism. In this article, it is followed the impacts of inserting the “Ampere” as illogic unit and it is derived the proper modifications of the results of replacing the “Ampere” by its logical substitute “Watt/Volt”. Such modifications lead to a robust definition of the electron as an elementary particle which has an elementary charge of energy 1.602 × 10<sup>-19</sup> Joules and has a negative electric potential of 1 Volt and to a proper definition of the protons as elementary particles which are charged by a similar charge of electron, but it has a positive potential of 1 Volt. Additionally, the electron-volt is properly defined as an elementary charge whose energy is 1.602 × 10<sup>-19</sup> Joules and whose potential is ±1 Volt. Such modifications also lead to improve the understanding of magnetic induction and modifying the equations that characterize the performance of electric machines. The truth of such innovative understandings is verified analytically and experimentally in this article.展开更多
Defining the electron to be a toroidal form of concentrated energy rather than a monopole point-charge, such as used for the Orbital Nuclear Atomic Model (ONAM), leads to a subtly different explanation for electricity...Defining the electron to be a toroidal form of concentrated energy rather than a monopole point-charge, such as used for the Orbital Nuclear Atomic Model (ONAM), leads to a subtly different explanation for electricity and the dynamic nature of electromagnetic fields. The Spin Torus Energy Model (STEM) is used to define the electron and positron, which are then used to explain the nature of electric and magnetic fields, electric current generation from battery and induction sources, capacitor charge and discharge, and superconductivity. STEM supports the notion that free positrons exist within matter, and are equal in importance to electrons: as ONAM makes no provision for positrons within matter, this assertion has wide ranging implications for atomic structure models and chemistry.展开更多
文摘Electricity and magnetism and electromagnetic induction are phenomena that can be perceived by people. But their interpretation and theoretical study took a long time. The theoretical research on electricity began with the discovery of Coulomb’s law in 1785, while the theoretical research on magnetism began with the discovery of Oersted’s Law in 1820. From the 1850s to the 1870s, Maxwell summarized a set of theoretical equations for electromagnetism based on some laws of predecessors. However, this set of equations contains a few statistical relationships and empirical concepts, so it is difficult to explain the physical nature of electromagnetic phenomena and principles. This paper explained that the macro phenomenon of electricity is the separation of unlike charges of new electrons produced by the orthogonal collision of old particles under the action of external forces. The physical nature of magnetism is the potential energy (magnetic energy) and information associated with the overall orientation of the moving electrons solidly recorded in the material. The physical principle of electromagnetic induction describes how change in electric current intensity generates change in magnetic intensity and vice versa through orthogonal interaction of ordered electrons. This theoretical interpretation does not require the concepts of traditional electromagnetic forces, electromagnetic fields, magnetic moments, and magnetic domains.
文摘When considering electromagnetism, the unit of the Ammeter’s measurement should be limited to its proper unit in “Watt/Volt” which is, according to physical principles, the division quotient of the measured electrical power by its electrical potential. However, the Ammeter’s reading has also a traditional definition as the rate of flow of electric charges whose unit is “Ampere”. According to recent studies that define the electric charge as energy possessing an electric potential, such traditional definition is wrong as the Ammeter’s reading should, then, has the unit “Watt”. Such duality of the Ammeter’s reading is due to the wrong definition of electric charges as electrons and insertion of the “Ampere”, as a wrong unit of the flow of electric charges. This duality represents a “redundancy” in electromagnetism as the proper Ammeter’s reading, in Watt/Volt, is a unit of entropy of the flowing energy charges. Such redundancy led to further redundancies in the field of electromagnetism. In this article, it is followed the impacts of inserting the “Ampere” as illogic unit and it is derived the proper modifications of the results of replacing the “Ampere” by its logical substitute “Watt/Volt”. Such modifications lead to a robust definition of the electron as an elementary particle which has an elementary charge of energy 1.602 × 10<sup>-19</sup> Joules and has a negative electric potential of 1 Volt and to a proper definition of the protons as elementary particles which are charged by a similar charge of electron, but it has a positive potential of 1 Volt. Additionally, the electron-volt is properly defined as an elementary charge whose energy is 1.602 × 10<sup>-19</sup> Joules and whose potential is ±1 Volt. Such modifications also lead to improve the understanding of magnetic induction and modifying the equations that characterize the performance of electric machines. The truth of such innovative understandings is verified analytically and experimentally in this article.
文摘Defining the electron to be a toroidal form of concentrated energy rather than a monopole point-charge, such as used for the Orbital Nuclear Atomic Model (ONAM), leads to a subtly different explanation for electricity and the dynamic nature of electromagnetic fields. The Spin Torus Energy Model (STEM) is used to define the electron and positron, which are then used to explain the nature of electric and magnetic fields, electric current generation from battery and induction sources, capacitor charge and discharge, and superconductivity. STEM supports the notion that free positrons exist within matter, and are equal in importance to electrons: as ONAM makes no provision for positrons within matter, this assertion has wide ranging implications for atomic structure models and chemistry.