With the gradual improvement of Chinese women’s status in the 21st century,gender studies and gender relations have become one of the hottest topics in Chinese society,which consequently prompted Chinese Women’s Cin...With the gradual improvement of Chinese women’s status in the 21st century,gender studies and gender relations have become one of the hottest topics in Chinese society,which consequently prompted Chinese Women’s Cinema to attract the attention of larger audiences.With regard to the box office performance of Chinese Women’s Cinema,there seems to be a gap in research in finding an association between women’s status and the relevant films’box office performance.The purpose of this research is to outline the underlying reasons for the changes in gender roles and gender representation in the Chinese film industry over the past few decades in order to better understand this expansive social change in the 21st century.This study provides a comprehensive analysis through the use of questionnaires to better understand society’s attitude towards gender representation within the film industry.The questionnaire findings indicate that there is a direct correlation between people’s awareness of women’s changing status and gender equality and their acceptance of materials produced by Chinese Women’s Cinema.At the some time,it highlights that the Chinese government’s support and initiatives for gender equality have had a significant impact on the general popularity of Chinese Women’s Cinema.The significance of this research is to effectively popularize Chinese Women’s Cinema culture and the box office growth by understanding the social attitude towards gender representation in the Chinese film industry and to provide relevant information about the development direction and trend of Chinese Women’s Cinema.Furthermore,this research aims to provide foundational support for gender equality and help to understand the underlying factors that society needs to promote gender equality.展开更多
Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near futur...Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.展开更多
Alpine treeline ecotones are highly sensitive to climate warming.The low temperature-determined alpine treeline is expected to shift upwards in response to global warming.However,little is known about how temperature ...Alpine treeline ecotones are highly sensitive to climate warming.The low temperature-determined alpine treeline is expected to shift upwards in response to global warming.However,little is known about how temperature interacts with other important factors to influence the distribution range of tree species within and beyond the alpine treeline ecotone.Hence,we used a GF-2 satellite image,along with bioclimatic and topographic variables,to develop an ensemble suitable habitat model based on the species distribution modeling algorithms in Biomod2.We investigated the distribution of suitable habitats for B.ermanii under three climate change scenarios(i.e.,low(SSP126),moderate(SSP370)and extreme(SSP585)future emission trajectories)between two consecutive time periods(i.e.,current-2055,and 2055-2085).By 2055,the potential distribution range of B.ermanii will expand under all three climate scenarios.The medium and high suitable areas will decline under SSP370 and SSP585scenarios from 2055 to 2085.Moreover,under the three climate scenarios,the uppermost altitudes of low suitable habitat will rise to 2,329 m a.s.l.,while the altitudes of medium and high suitable habitats will fall to 2,201 and2,051 m a.s.l.by 2085,respectively.Warming promotes the expansion of B.ermanii distribution range in Changbai Mountain,and this expansion will be modified by precipitation as climate warming continues.This interaction between temperature and precipitation plays a significant role in shaping the potential distribution range of B.ermanii in the alpine treeline ecotone.This study reveals the link between environmental factors,habitat distribution,and species distribution in the alpine treeline ecotone,providing valuable insights into the impacts of climate change on high-elevation vegetation,and contributing to mountain biodiversity conservation and sustainable development.展开更多
The ecotone, the spatial transition zone between two vegetation communities, is claimed to have more species than the adjoining communities. However, empirical studies do not always confirm higher richness at the ecot...The ecotone, the spatial transition zone between two vegetation communities, is claimed to have more species than the adjoining communities. However, empirical studies do not always confirm higher richness at the ecotone. The ecotone position and structure are dynamic over time and space and it is driven by the changes in climate, land use or their interaction. In this context, we assessed the forest- grassland ecotone of temperate mountains in central Nepal by i) comparing species composition and richness across the ecotone, ii) analyzing if the forestgrassland ecotone is shifting towards the grassland center by colonizing them with trees, and iii) discussing the consequence of changed disturbance regime in the dynamics of this ecotone and the surrounding grasslands. We analyzed vegetation data sampled from belt transects laid across the forest- grassland ecotone in semi-natural grassland patches. Vegetation data consisting of species richness and composition, and size structure and regeneration of the two most dominant tree species, namely Rhododendron arboreum and Abies spectabilis, from the transects, were used to analyze the trend of the forest-grassland ecotone. Forest and grasslands were different in terms of floristic composition and diversity. Vascular plant speciesrichness linearly increased while moving from forest interior to grassland center. Spatial pattern of tree size structure and regeneration infers that forest boundary is advancing towards the grasslands at the expense of the grassland area, and tree establishment in the grasslands is part of a suceessional process. Temporally, tree establishment in grasslands started following the gradual decline in disturbance. We argue that local processes in terms of changed land use may best explain the phenomenon of ecotone shift and consequent forest expansion in these grasslands. We underpin the need for further research on the mechanism, rate and spatial extent of ecotone shift by using advaneed tools to understand the process indepth.展开更多
Alterations of annual temperature cycles have profound implications on how the planet responds to global climate change. In this study, a high resolution global analysis of temperature cycle shifts and their developme...Alterations of annual temperature cycles have profound implications on how the planet responds to global climate change. In this study, a high resolution global analysis of temperature cycle shifts and their development over time is presented. We show that over the last 63 years, phase shifts in the annual near surface temperature cycle exhibit large spatiotemporal variability. The calculated phase shifts comprise earlier onsets of seasons as well as delays with similar frequencies, depending on location. From 1978 to 2010 Eastern Europe experienced an advanced annual cycle of near-surface temperature of 3.2 days while Eastern Australia shows an opposite shift towards later seasons of 3.5 days in comparison to the preceding 30-year period from 1948 to 1977. The largest phase shifts of –5.5 days toward earlier seasons over land were found in Belarus and Northwest Russia. For the first time the developments of seasonal temperature shifts were generalized for large areas by using self-organizing feature map neural networks resulting into 4 significant global trends. The temperature phase shifts are also shown to have strong correlations with the timing of shrub foliation observed at 57 phenological stations across the USA. The findings have far-reaching, yet regionally distinct consequences on agriculture, animal life cycles, plant phenology, and regional weather phenomena that change with annual temperature cycles.展开更多
This research tried to propose possible ways to resolve the paper over-consumption issues. The nature resources have been over used all the time. How we used the technologies to solve environmental problems has become...This research tried to propose possible ways to resolve the paper over-consumption issues. The nature resources have been over used all the time. How we used the technologies to solve environmental problems has become an essential issue. How we could develop a prosperous vision for the future is even critical to solving design problems. The research methods used are literature reviews and conception design with empathy. This paper also tried to discuss various issues from different aspects. Nowadays, we have been influenced by technologies in our daily life. Even our cultures, life styles, and behavior, etc. are deeply changed. However, there are few ways we need to think what will happen in the future and how we could imagine possible ways to solve all of these problems. This research has proposed The Virtual Home (T.V.H.), which is a way to change the mass media dissemination and information control. The T.V.H. designed with some functions is trying to centralize all kind of mass media and help save natural resources.展开更多
The Vowel changes of English are more dramatic and complicated in every period of English development. Especially theGreat Vowel Shift from Middle English to Modern English influenced the whole English phonetic system...The Vowel changes of English are more dramatic and complicated in every period of English development. Especially theGreat Vowel Shift from Middle English to Modern English influenced the whole English phonetic system. This paper examines thevowel changes in each period of English development and aims at concluding the rules of the language change and development.展开更多
The Asian Forum on Human Rights was held at the Renmin University of China(RUC)from November 26 to 27,2022.With the theme“Environment,Climate Change and Human Rights,”the event consisted of 12 sub-forums.The forum w...The Asian Forum on Human Rights was held at the Renmin University of China(RUC)from November 26 to 27,2022.With the theme“Environment,Climate Change and Human Rights,”the event consisted of 12 sub-forums.The forum was hosted by RUC and jointly organized by the RUC Law School,RUC School of Global Governance,Human Rights Center of RUC,RUC Asia-Pacific Institute of Law,and RUC Center for Coordination and Innovation of Food Safety Governance.The forum focused on discussing topics related to climate change and the environment and responded to common concerns of the international community.It built an international exchange platform to facilitate Asian scholars to build consensus on human rights.Covering a wide range of topics,the event promoted academic exchange in various fields.Experts and scholars from both home and abroad built an extensive consensus on topics such as climate change,environmental conservation,and human rights protection through open exchanges and in-depth discussions,contributing their ideas and wisdom to improving the common well-being of Asian people.展开更多
Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate...Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate envelope model(DBEM)was used to identify the“environmental preference profi les”of the studied species based on outputs from three Earth system models(ESMs).Changes in ocean conditions in climate change scenarios could be transformed by the model into those in relative abundance and distribution of species.Therefore,the distributional response of 17 demersal fi shes to climate change in the Yellow Sea could be projected from 1970 to 2060.Indices of latitudinal centroid(LC)and mean temperature of relative abundance(MTRA)were used to represent the results conducted by model.Results present that 17 demersal fi sh species in the Yellow Sea show a trend of anti-poleward shift under both low-emission scenario(RCP 2.6)and high-emission scenario(RCP 8.5)from 1970 to 2060,with the projected average LC in three ESMs shifting at a rate of-1.17±4.55 and-2.76±3.82 km/decade,respectively,which is contrary to the previous projecting studies of fi shes suggesting that fi shes tend to move toward higher latitudes under increased temperature scenarios.The Yellow Sea Cold Water Mass could be the major driver resulting in the shift,which shows a potential signifi cance to fi shery resources management and marine conservation,and provides a new perspective in fi sh migration under climate change.展开更多
Climate is a critical factor affecting forest ecosystems and their capacity to produce goods and services. Effects of climate change on forests depend on ecosystem-specific factors including dimensions of climate (te...Climate is a critical factor affecting forest ecosystems and their capacity to produce goods and services. Effects of climate change on forests depend on ecosystem-specific factors including dimensions of climate (temperature, precipitation, drought, wind etc.). Available infor- mation is not sufficient to support a quantitative assessment of the eco- logical, social and economic consequences. The present study assessed shifts in forest cover types of Western Himalayan Eco-region (700-4 500 m). 100 randomly selected samples (75 for training and 25 for testing the model), genetic algorithm of rule set parameters and climatic envelopes were used to assess the distribution of five prominent forest cover types (Temperate evergreen, Tropical semi-evergreen, Temperate conifer, Sub- tropical conifer, and Tropical moist deciduous forests). Modelling was conducted for four different scenarios, current scenario, changed precipi- tation (8% increase), changed temperature (1.07℃ increase), and both changed temperature and precipitation. On increasing precipitation a downward shift in the temperate evergreen and tropical semi-evergreen was observed, while sub-tropical conifer and tropical moist-deciduous forests showed a slight upward shift and temperate conifer showed 'no shift. On increasing temperatm'e, an upward shift in all forest types was observed except sub-tropical conifer forests without significant changes. When both temperature and precipitation were changed, the actual dis- tribution was maintained and slight upward shift was observed in all the forest types except sub-tropical conifer. It is important to understand the likely impacts of the projected climate change on the forest ecosystems, so that better management and conservation strategies can be adopted for the biodiversity and forest dependent community. Knowledge of impact mechanisms also enables identification and mitigation of some of the conditions that increase vulnerability to climate change in the forest sector.展开更多
The impacts of climate change in terms of forest vegetation shifts and Net Primary Productivity (NPP) changes are assessed for Brahmaputra, Koshi and Indus river basins for the mid (2021-2050) and long (2071-2100) ter...The impacts of climate change in terms of forest vegetation shifts and Net Primary Productivity (NPP) changes are assessed for Brahmaputra, Koshi and Indus river basins for the mid (2021-2050) and long (2071-2100) terms for RCP4.5 and RCP8.5 scenarios. Two Dynamical Global Vegetation Models (DGVMs), Integrated BIosphere Simulator (IBIS) and (Lund Postdam and Jena (LPJ), have been used for this purpose. The DGVMs are driven by the ensemble mean climate projections from 5 climate models that contributed to the CMIP5 data base. While both DGVMs project vegetation shifts in the forest areas of the basins, there are large differences in vegetation shifts projected by IBIS and LPJ. This may be attributed to differing representation of land surface processes and to differences in the number of vegetation types (Plant Functional Types) defined and simulated in the two models. However, there is some agreement in NPP changes as projected by both IBIS and LPJ, with IBIS mostly projecting a larger increase in NPP for the future scenarios. Despite the uncertainties with respect to climate change projections at river basin level and the differing impact assessments from different DGVMs, it is necessary to assess the “vulnerability” of the forest ecosystems and forest dependent communities to current climate risks and future climate change and to develop and implement resilience or adaptation measures. Assessment of the “vulnerability” and designing of the adaptation strategies could be undertaken for all the forested grids where both IBIS and LPJ project vegetation shifts.展开更多
Occupational Health (OH) is an important chapter of Public Health but its visibility is poor and continues to decrease. Examples of this worrying trend show that it impacts on our society regarding health of the worki...Occupational Health (OH) is an important chapter of Public Health but its visibility is poor and continues to decrease. Examples of this worrying trend show that it impacts on our society regarding health of the working population and the retired individuals and on the economy through huge expenses for health, absenteeism, psychosocial problems, loss of performance and quality of work, etc. To cope with this challenge and to give its right place to OH, a global approach and a vision of this multidisciplinary field is needed as well as the development of emerging issues that stress, besides the prevention of occupational diseases, the promotion of “good health” through sciences like salutogenesis, positive psychology and the new findings of neuroscience. Moreover, all the partners involved in OH have to take their responsibility of this matter. The OH professionals have to enlarge the scope of their expertise;the academic institutions and research and education centers have to give more support to OH and the social partners and the decision-makers (politicians) have to put OH in their priorities. This paper is not a review of the new dimensions of OH but an overview of the emerging issues that have to be developed, based on the author’s experience of more than 40 years.展开更多
Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial resp...Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial response and water hazards have been documented in the Himalayas in recent years, yet studies regarding species' response to climate change are largely lacking from the mountains and Himalayas of Nepal. Changes in distribution and latitudinal/altitudinal range shift, which are primary adaptive responses to climate change in many species,are largely unknown due to unavailability of adequate data from the past. In this study, we explored the elevational distribution of butterflies in Langtang Village Development Committee(VDC) of Langtang National park; a park located in the high altitudes of Nepal. We found a decreasing species richness pattern along the elevational gradient considered here.Interestingly, elevation did not appear to have a significant effect on the altitudinal distribution ofbutterflies at family level. Also, distribution of butterflies in the area was independent of habitat type,at family level. Besides, we employed indicator group analysis(at family level) and noticed that butterfly families Papilionidae, Riodinidae, and Nymphalidae are significantly associated to high, medium and low elevational zone making them indicator butterfly family for those elevational zones, respectively. We expect that this study could serve as a baseline information for future studies regarding climate change effects and range shifts and provide avenues for further exploration of butterflies in the high altitudes of Nepal.展开更多
Background:Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns.While much effort has been ...Background:Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns.While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species.The Common Grackle(Quiscalus quiscula;Linnaeus 1758),though declining in portions of its range,is a widespread blackbird(Icteridae)species in North America east of the Rocky Mountains.This study examined how climate change might affect the future range distribution of Common Grackles.Methods:We used the R package Wallace and six general climate models(ACCESS1-0,BCC-CSM1-1,CESM1-CAM5-1-FV2,CNRM-CM5,MIROC-ESM,and MPI-ESM-LR)available for the future(2070)to identify climatically suitable areas,with an ecological niche modelling approach that includes the use of environmental conditions.Results:Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska,even under more optimistic climate change scenarios.Additionally,there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America.The most important bioclimatic variables for model predictions were Annual Mean Temperature,Temperature Seasonality,Mean Temperature of Wettest Quarter and Annual Precipitation.Conclusions:The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years.This research is important in helping us understand how climate change will affect future range patterns of widespread,common bird species.展开更多
Analysis of historical and recent data is essential to understand how eutrophication and/or climate change might trigger shifts in the feeding mode of fish and trophic dynamics of shallow lakes. To assess long-term ch...Analysis of historical and recent data is essential to understand how eutrophication and/or climate change might trigger shifts in the feeding mode of fish and trophic dynamics of shallow lakes. To assess long-term changes in the diet and growth of juvenile pikeperch (Sander lucioperca), the prey selection and growth of pikeperch fry from Lake V?rtsj?rv was investigated in 2007 - 2010 and compared with data from 1920 to 1970. Over the observed period, larger cladocerans have become less frequent in the diet as eutrophication has altered the zooplankton community. Furthermore, climate change has triggered a mismatch between the predator and its prey: the smelt population has collapsed but other fish fries are too large for YOY (young-of-the-year) pikeperch. However, the mean length of fish has decreased mainly due to the postponed diet shift.展开更多
Language change is the manner in which the phonetic, morphological, semantic, syntactic, and other features of a language are modified over time. Vocabulary can change quickly as new words are borrowed from other lang...Language change is the manner in which the phonetic, morphological, semantic, syntactic, and other features of a language are modified over time. Vocabulary can change quickly as new words are borrowed from other languages, or as words get combined or shortened. Information and communication technologies (ICT) are one of the major driving forces in the process of globalization. This paper focuses on some lexicon changes over the last two decades. In particular, affixation, compounding, blending, and meaning shift are illustrated in detail.展开更多
Marketing concept refers to the guiding ideology of correctly dealing with the interest relationship among enterprise, customers and society and also the fundamental standard for behaviors in the process of an enterpr...Marketing concept refers to the guiding ideology of correctly dealing with the interest relationship among enterprise, customers and society and also the fundamental standard for behaviors in the process of an enterprise to carry out all marketing activities in a certain period of time, production and business technology, and market environmental conditions. In this paper, the change of customer concept in marketing activities is mainly discussed. Therefore, this paper is of certain practical and guiding significance.展开更多
Although paid to upward shift response to global phenomenon at low zones did not receive increasing attention has been of plant species in altitude as a warming, research on this altitudinal and low latitudinal enoug...Although paid to upward shift response to global phenomenon at low zones did not receive increasing attention has been of plant species in altitude as a warming, research on this altitudinal and low latitudinal enough attention. In this study, an investigation was carried out to test the relationship between the upward spread of Moso bamboo (Phyllostachys pubescens) along altitudinal gradient and the increasing air temperature over the past decade within the Tianmu Mountain region, situated in southeastern China. Results showed that the peak elevation of Moso bamboo population establishment rose by an average of 9.8 m (±2.7 m) during the past decade and significant correlation existed with mean annual temperature (P 〈 0.0001, n = 339) but not with annual precipitation (P = 0.7, n = 339), indicating that the upward shift of Moso bamboo along altitudinal gradients was driven primarily by warming temperatures. This upward shift could potentially reduce biodiversity by altering the species composition of the ecosystem. However, there is also the potential for increased carbon sequestration capacity of local forest systems, which would produce an additional carbon sink to combat rising atmospheric C02 concentrations and future global warming.展开更多
文摘With the gradual improvement of Chinese women’s status in the 21st century,gender studies and gender relations have become one of the hottest topics in Chinese society,which consequently prompted Chinese Women’s Cinema to attract the attention of larger audiences.With regard to the box office performance of Chinese Women’s Cinema,there seems to be a gap in research in finding an association between women’s status and the relevant films’box office performance.The purpose of this research is to outline the underlying reasons for the changes in gender roles and gender representation in the Chinese film industry over the past few decades in order to better understand this expansive social change in the 21st century.This study provides a comprehensive analysis through the use of questionnaires to better understand society’s attitude towards gender representation within the film industry.The questionnaire findings indicate that there is a direct correlation between people’s awareness of women’s changing status and gender equality and their acceptance of materials produced by Chinese Women’s Cinema.At the some time,it highlights that the Chinese government’s support and initiatives for gender equality have had a significant impact on the general popularity of Chinese Women’s Cinema.The significance of this research is to effectively popularize Chinese Women’s Cinema culture and the box office growth by understanding the social attitude towards gender representation in the Chinese film industry and to provide relevant information about the development direction and trend of Chinese Women’s Cinema.Furthermore,this research aims to provide foundational support for gender equality and help to understand the underlying factors that society needs to promote gender equality.
基金The work was partially supported by research project funding from the Undergraduate Research Grant,Arkansas Tech University.
文摘Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.
基金the National Key R&D Program of China(Grant NO.2022YFF1300904)the National Natural Science Foundation of China(Grant NO.42001106,42371075,42271119)+2 种基金the Joint Fund of National Natural Science Foundation of China(Grant NO.U19A2042,U19A2023,U20A2083)the Natural Science Foundation of Jilin Province,China(YDZJ202201ZYTS483)Youth Innovation Promotion Association,Chinese Academy of Sciences(2023238)。
文摘Alpine treeline ecotones are highly sensitive to climate warming.The low temperature-determined alpine treeline is expected to shift upwards in response to global warming.However,little is known about how temperature interacts with other important factors to influence the distribution range of tree species within and beyond the alpine treeline ecotone.Hence,we used a GF-2 satellite image,along with bioclimatic and topographic variables,to develop an ensemble suitable habitat model based on the species distribution modeling algorithms in Biomod2.We investigated the distribution of suitable habitats for B.ermanii under three climate change scenarios(i.e.,low(SSP126),moderate(SSP370)and extreme(SSP585)future emission trajectories)between two consecutive time periods(i.e.,current-2055,and 2055-2085).By 2055,the potential distribution range of B.ermanii will expand under all three climate scenarios.The medium and high suitable areas will decline under SSP370 and SSP585scenarios from 2055 to 2085.Moreover,under the three climate scenarios,the uppermost altitudes of low suitable habitat will rise to 2,329 m a.s.l.,while the altitudes of medium and high suitable habitats will fall to 2,201 and2,051 m a.s.l.by 2085,respectively.Warming promotes the expansion of B.ermanii distribution range in Changbai Mountain,and this expansion will be modified by precipitation as climate warming continues.This interaction between temperature and precipitation plays a significant role in shaping the potential distribution range of B.ermanii in the alpine treeline ecotone.This study reveals the link between environmental factors,habitat distribution,and species distribution in the alpine treeline ecotone,providing valuable insights into the impacts of climate change on high-elevation vegetation,and contributing to mountain biodiversity conservation and sustainable development.
基金financial support from the NOrad's Program for MAsters Studies (NOMA) at Central Department of Botany, Tribhuvan University, Kathmandu, Nepalfunded by the Norwegian Research Council (190153/V10)Grolle Olsens Legat
文摘The ecotone, the spatial transition zone between two vegetation communities, is claimed to have more species than the adjoining communities. However, empirical studies do not always confirm higher richness at the ecotone. The ecotone position and structure are dynamic over time and space and it is driven by the changes in climate, land use or their interaction. In this context, we assessed the forest- grassland ecotone of temperate mountains in central Nepal by i) comparing species composition and richness across the ecotone, ii) analyzing if the forestgrassland ecotone is shifting towards the grassland center by colonizing them with trees, and iii) discussing the consequence of changed disturbance regime in the dynamics of this ecotone and the surrounding grasslands. We analyzed vegetation data sampled from belt transects laid across the forest- grassland ecotone in semi-natural grassland patches. Vegetation data consisting of species richness and composition, and size structure and regeneration of the two most dominant tree species, namely Rhododendron arboreum and Abies spectabilis, from the transects, were used to analyze the trend of the forest-grassland ecotone. Forest and grasslands were different in terms of floristic composition and diversity. Vascular plant speciesrichness linearly increased while moving from forest interior to grassland center. Spatial pattern of tree size structure and regeneration infers that forest boundary is advancing towards the grasslands at the expense of the grassland area, and tree establishment in the grasslands is part of a suceessional process. Temporally, tree establishment in grasslands started following the gradual decline in disturbance. We argue that local processes in terms of changed land use may best explain the phenomenon of ecotone shift and consequent forest expansion in these grasslands. We underpin the need for further research on the mechanism, rate and spatial extent of ecotone shift by using advaneed tools to understand the process indepth.
文摘Alterations of annual temperature cycles have profound implications on how the planet responds to global climate change. In this study, a high resolution global analysis of temperature cycle shifts and their development over time is presented. We show that over the last 63 years, phase shifts in the annual near surface temperature cycle exhibit large spatiotemporal variability. The calculated phase shifts comprise earlier onsets of seasons as well as delays with similar frequencies, depending on location. From 1978 to 2010 Eastern Europe experienced an advanced annual cycle of near-surface temperature of 3.2 days while Eastern Australia shows an opposite shift towards later seasons of 3.5 days in comparison to the preceding 30-year period from 1948 to 1977. The largest phase shifts of –5.5 days toward earlier seasons over land were found in Belarus and Northwest Russia. For the first time the developments of seasonal temperature shifts were generalized for large areas by using self-organizing feature map neural networks resulting into 4 significant global trends. The temperature phase shifts are also shown to have strong correlations with the timing of shrub foliation observed at 57 phenological stations across the USA. The findings have far-reaching, yet regionally distinct consequences on agriculture, animal life cycles, plant phenology, and regional weather phenomena that change with annual temperature cycles.
文摘This research tried to propose possible ways to resolve the paper over-consumption issues. The nature resources have been over used all the time. How we used the technologies to solve environmental problems has become an essential issue. How we could develop a prosperous vision for the future is even critical to solving design problems. The research methods used are literature reviews and conception design with empathy. This paper also tried to discuss various issues from different aspects. Nowadays, we have been influenced by technologies in our daily life. Even our cultures, life styles, and behavior, etc. are deeply changed. However, there are few ways we need to think what will happen in the future and how we could imagine possible ways to solve all of these problems. This research has proposed The Virtual Home (T.V.H.), which is a way to change the mass media dissemination and information control. The T.V.H. designed with some functions is trying to centralize all kind of mass media and help save natural resources.
文摘The Vowel changes of English are more dramatic and complicated in every period of English development. Especially theGreat Vowel Shift from Middle English to Modern English influenced the whole English phonetic system. This paper examines thevowel changes in each period of English development and aims at concluding the rules of the language change and development.
文摘The Asian Forum on Human Rights was held at the Renmin University of China(RUC)from November 26 to 27,2022.With the theme“Environment,Climate Change and Human Rights,”the event consisted of 12 sub-forums.The forum was hosted by RUC and jointly organized by the RUC Law School,RUC School of Global Governance,Human Rights Center of RUC,RUC Asia-Pacific Institute of Law,and RUC Center for Coordination and Innovation of Food Safety Governance.The forum focused on discussing topics related to climate change and the environment and responded to common concerns of the international community.It built an international exchange platform to facilitate Asian scholars to build consensus on human rights.Covering a wide range of topics,the event promoted academic exchange in various fields.Experts and scholars from both home and abroad built an extensive consensus on topics such as climate change,environmental conservation,and human rights protection through open exchanges and in-depth discussions,contributing their ideas and wisdom to improving the common well-being of Asian people.
基金Supported by the National Natural Science Foundation of China(No.42176234)the Chinese Arctic and Antarctic Creative Program(No.JDXT2018-01)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0402)。
文摘Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate envelope model(DBEM)was used to identify the“environmental preference profi les”of the studied species based on outputs from three Earth system models(ESMs).Changes in ocean conditions in climate change scenarios could be transformed by the model into those in relative abundance and distribution of species.Therefore,the distributional response of 17 demersal fi shes to climate change in the Yellow Sea could be projected from 1970 to 2060.Indices of latitudinal centroid(LC)and mean temperature of relative abundance(MTRA)were used to represent the results conducted by model.Results present that 17 demersal fi sh species in the Yellow Sea show a trend of anti-poleward shift under both low-emission scenario(RCP 2.6)and high-emission scenario(RCP 8.5)from 1970 to 2060,with the projected average LC in three ESMs shifting at a rate of-1.17±4.55 and-2.76±3.82 km/decade,respectively,which is contrary to the previous projecting studies of fi shes suggesting that fi shes tend to move toward higher latitudes under increased temperature scenarios.The Yellow Sea Cold Water Mass could be the major driver resulting in the shift,which shows a potential signifi cance to fi shery resources management and marine conservation,and provides a new perspective in fi sh migration under climate change.
文摘Climate is a critical factor affecting forest ecosystems and their capacity to produce goods and services. Effects of climate change on forests depend on ecosystem-specific factors including dimensions of climate (temperature, precipitation, drought, wind etc.). Available infor- mation is not sufficient to support a quantitative assessment of the eco- logical, social and economic consequences. The present study assessed shifts in forest cover types of Western Himalayan Eco-region (700-4 500 m). 100 randomly selected samples (75 for training and 25 for testing the model), genetic algorithm of rule set parameters and climatic envelopes were used to assess the distribution of five prominent forest cover types (Temperate evergreen, Tropical semi-evergreen, Temperate conifer, Sub- tropical conifer, and Tropical moist deciduous forests). Modelling was conducted for four different scenarios, current scenario, changed precipi- tation (8% increase), changed temperature (1.07℃ increase), and both changed temperature and precipitation. On increasing precipitation a downward shift in the temperate evergreen and tropical semi-evergreen was observed, while sub-tropical conifer and tropical moist-deciduous forests showed a slight upward shift and temperate conifer showed 'no shift. On increasing temperatm'e, an upward shift in all forest types was observed except sub-tropical conifer forests without significant changes. When both temperature and precipitation were changed, the actual dis- tribution was maintained and slight upward shift was observed in all the forest types except sub-tropical conifer. It is important to understand the likely impacts of the projected climate change on the forest ecosystems, so that better management and conservation strategies can be adopted for the biodiversity and forest dependent community. Knowledge of impact mechanisms also enables identification and mitigation of some of the conditions that increase vulnerability to climate change in the forest sector.
文摘The impacts of climate change in terms of forest vegetation shifts and Net Primary Productivity (NPP) changes are assessed for Brahmaputra, Koshi and Indus river basins for the mid (2021-2050) and long (2071-2100) terms for RCP4.5 and RCP8.5 scenarios. Two Dynamical Global Vegetation Models (DGVMs), Integrated BIosphere Simulator (IBIS) and (Lund Postdam and Jena (LPJ), have been used for this purpose. The DGVMs are driven by the ensemble mean climate projections from 5 climate models that contributed to the CMIP5 data base. While both DGVMs project vegetation shifts in the forest areas of the basins, there are large differences in vegetation shifts projected by IBIS and LPJ. This may be attributed to differing representation of land surface processes and to differences in the number of vegetation types (Plant Functional Types) defined and simulated in the two models. However, there is some agreement in NPP changes as projected by both IBIS and LPJ, with IBIS mostly projecting a larger increase in NPP for the future scenarios. Despite the uncertainties with respect to climate change projections at river basin level and the differing impact assessments from different DGVMs, it is necessary to assess the “vulnerability” of the forest ecosystems and forest dependent communities to current climate risks and future climate change and to develop and implement resilience or adaptation measures. Assessment of the “vulnerability” and designing of the adaptation strategies could be undertaken for all the forested grids where both IBIS and LPJ project vegetation shifts.
文摘Occupational Health (OH) is an important chapter of Public Health but its visibility is poor and continues to decrease. Examples of this worrying trend show that it impacts on our society regarding health of the working population and the retired individuals and on the economy through huge expenses for health, absenteeism, psychosocial problems, loss of performance and quality of work, etc. To cope with this challenge and to give its right place to OH, a global approach and a vision of this multidisciplinary field is needed as well as the development of emerging issues that stress, besides the prevention of occupational diseases, the promotion of “good health” through sciences like salutogenesis, positive psychology and the new findings of neuroscience. Moreover, all the partners involved in OH have to take their responsibility of this matter. The OH professionals have to enlarge the scope of their expertise;the academic institutions and research and education centers have to give more support to OH and the social partners and the decision-makers (politicians) have to put OH in their priorities. This paper is not a review of the new dimensions of OH but an overview of the emerging issues that have to be developed, based on the author’s experience of more than 40 years.
基金funded by The Rufford Foundation(http://www.rufford.org/)
文摘Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial response and water hazards have been documented in the Himalayas in recent years, yet studies regarding species' response to climate change are largely lacking from the mountains and Himalayas of Nepal. Changes in distribution and latitudinal/altitudinal range shift, which are primary adaptive responses to climate change in many species,are largely unknown due to unavailability of adequate data from the past. In this study, we explored the elevational distribution of butterflies in Langtang Village Development Committee(VDC) of Langtang National park; a park located in the high altitudes of Nepal. We found a decreasing species richness pattern along the elevational gradient considered here.Interestingly, elevation did not appear to have a significant effect on the altitudinal distribution ofbutterflies at family level. Also, distribution of butterflies in the area was independent of habitat type,at family level. Besides, we employed indicator group analysis(at family level) and noticed that butterfly families Papilionidae, Riodinidae, and Nymphalidae are significantly associated to high, medium and low elevational zone making them indicator butterfly family for those elevational zones, respectively. We expect that this study could serve as a baseline information for future studies regarding climate change effects and range shifts and provide avenues for further exploration of butterflies in the high altitudes of Nepal.
文摘Background:Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns.While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species.The Common Grackle(Quiscalus quiscula;Linnaeus 1758),though declining in portions of its range,is a widespread blackbird(Icteridae)species in North America east of the Rocky Mountains.This study examined how climate change might affect the future range distribution of Common Grackles.Methods:We used the R package Wallace and six general climate models(ACCESS1-0,BCC-CSM1-1,CESM1-CAM5-1-FV2,CNRM-CM5,MIROC-ESM,and MPI-ESM-LR)available for the future(2070)to identify climatically suitable areas,with an ecological niche modelling approach that includes the use of environmental conditions.Results:Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska,even under more optimistic climate change scenarios.Additionally,there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America.The most important bioclimatic variables for model predictions were Annual Mean Temperature,Temperature Seasonality,Mean Temperature of Wettest Quarter and Annual Precipitation.Conclusions:The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years.This research is important in helping us understand how climate change will affect future range patterns of widespread,common bird species.
文摘Analysis of historical and recent data is essential to understand how eutrophication and/or climate change might trigger shifts in the feeding mode of fish and trophic dynamics of shallow lakes. To assess long-term changes in the diet and growth of juvenile pikeperch (Sander lucioperca), the prey selection and growth of pikeperch fry from Lake V?rtsj?rv was investigated in 2007 - 2010 and compared with data from 1920 to 1970. Over the observed period, larger cladocerans have become less frequent in the diet as eutrophication has altered the zooplankton community. Furthermore, climate change has triggered a mismatch between the predator and its prey: the smelt population has collapsed but other fish fries are too large for YOY (young-of-the-year) pikeperch. However, the mean length of fish has decreased mainly due to the postponed diet shift.
文摘Language change is the manner in which the phonetic, morphological, semantic, syntactic, and other features of a language are modified over time. Vocabulary can change quickly as new words are borrowed from other languages, or as words get combined or shortened. Information and communication technologies (ICT) are one of the major driving forces in the process of globalization. This paper focuses on some lexicon changes over the last two decades. In particular, affixation, compounding, blending, and meaning shift are illustrated in detail.
文摘Marketing concept refers to the guiding ideology of correctly dealing with the interest relationship among enterprise, customers and society and also the fundamental standard for behaviors in the process of an enterprise to carry out all marketing activities in a certain period of time, production and business technology, and market environmental conditions. In this paper, the change of customer concept in marketing activities is mainly discussed. Therefore, this paper is of certain practical and guiding significance.
基金funded by the National Nature Science Foundation of China (Grant No. 31070440,31270517)China QianRen Program,NSERC-Discovery GrantZhejiang A & F University Research and Development Fund (2012FR023)
文摘Although paid to upward shift response to global phenomenon at low zones did not receive increasing attention has been of plant species in altitude as a warming, research on this altitudinal and low latitudinal enough attention. In this study, an investigation was carried out to test the relationship between the upward spread of Moso bamboo (Phyllostachys pubescens) along altitudinal gradient and the increasing air temperature over the past decade within the Tianmu Mountain region, situated in southeastern China. Results showed that the peak elevation of Moso bamboo population establishment rose by an average of 9.8 m (±2.7 m) during the past decade and significant correlation existed with mean annual temperature (P 〈 0.0001, n = 339) but not with annual precipitation (P = 0.7, n = 339), indicating that the upward shift of Moso bamboo along altitudinal gradients was driven primarily by warming temperatures. This upward shift could potentially reduce biodiversity by altering the species composition of the ecosystem. However, there is also the potential for increased carbon sequestration capacity of local forest systems, which would produce an additional carbon sink to combat rising atmospheric C02 concentrations and future global warming.