This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technol...This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technology,focusing on analyzing the current application status of computer science and technology in big data,including data storage,data processing,and data analysis.Then,it proposes development strategies for big data processing.Computer science and technology play a vital role in big data processing by providing strong technical support.展开更多
Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,...Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,but also transferred in real time by a radio-link to the NOAA through the GOES satellite.The new ET34-ANA-V80 version of ETERNA,initially developed for Earth Tides analysis,is now able to analyze ocean tides records.Through a two-step validation scheme,we took advantage of the flexibility of this new version,operated in conjunction with the preprocessing facilities of the Tsoft software,to recover co rrected data series able to model sea-level variations after elimination of the ocean tides signal.We performed the tidal analysis of the tide gauge data with the highest possible selectivity(optimal wave grouping)and a maximum of additional terms(shallow water constituents).Our goal was to provide corrected data series and modelled ocean tides signal to compute tide-free sea-level variations as well as tidal prediction models with centimeter precision.We also present in this study the characteristics of the ocean tides in French Polynesia and preliminary results concerning the non-tidal variations of the sea level concerning the tide gauge setting.展开更多
The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark sour...The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.展开更多
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ...Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.展开更多
Timestamps play a key role in process mining because it determines the chronology of which events occurred and subsequently how they are ordered in process modelling.The timestamp in process mining gives an insight on...Timestamps play a key role in process mining because it determines the chronology of which events occurred and subsequently how they are ordered in process modelling.The timestamp in process mining gives an insight on process performance,conformance,and modelling.This therefore means problems with the timestamp will result in misrepresentations of the mined process.A few articles have been published on the quantification of data quality problems but just one of the articles at the time of this paper is based on the quantification of timestamp quality problems.This article evaluates the quality of timestamps in event log across two axes using eleven quality dimensions and four levels of potential data quality problems.The eleven data quality dimensions were obtained by doing a thorough literature review of more than fifty process mining articles which focus on quality dimensions.This evaluation resulted in twelve data quality quantification metrics and the metrics were applied to the MIMIC-ll dataset as an illustration.The outcome of the timestamp quality quantification using the proposed typology enabled the user to appreciate the quality of the event log and thus makes it possible to evaluate the risk of carrying out specific data cleaning measures to improve the process mining outcome.展开更多
This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabili...This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.展开更多
Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacki...Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms.展开更多
In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene p...In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelli...One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier.展开更多
The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurfac...The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.展开更多
Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria ...Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria allows us to uncover mechanisms behind the gravity interaction and understand the underlying physical processes that contribute to the formation of large-scale structures such as galaxies.We use a segmentation process using intensity thresholding and the k-means clustering algorithm to analyze radio galaxy images.We employ a symmetry criterion and explore the relation between morphological symmetry in radio maps and host galaxy properties.Optical properties(stellar mass,black hole mass,optical size(R_(50)),concentration,stellar mass surface density(μ_(50)),and stellar age)and radio properties(radio flux density,radio luminosity,and radio size)are considered.We found that there is a correlation between symmetry and radio size,indicating larger radio sources have smaller symmetry indices.Therefore,size of radio sources should be considered in any investigation of symmetry.Weak correlations are also observed with other properties,such as R_(50)for FRI galaxies and stellar age.We compare the symmetry differences between FRI and FRII radio galaxies.FRII galaxies show higher symmetry in 1.4 GHz and 150 MHz maps.Investigating the influence of radio source sizes,we discovered that this result is independent of the sizes of radio sources.These findings contribute to our understanding of the morphological properties and analyses of radio galaxies.展开更多
This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on r...This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.展开更多
As developing and emerging nations move away from the periphery and start realising their collective importance and growing value in the transitioning of global geopolitics,a change of narrative and perception is taki...As developing and emerging nations move away from the periphery and start realising their collective importance and growing value in the transitioning of global geopolitics,a change of narrative and perception is taking shape.Since 2001,the Boao Forum for Asia(BFA),often dubbed the“Davos of Asia,”has been central to this process of self-realisation and has had a huge impact on the global stage.展开更多
This study addressed the issues related to the collection and management of basic data for railway green performance. A railway green performance basic database has been constructed based on metadata and data exchange...This study addressed the issues related to the collection and management of basic data for railway green performance. A railway green performance basic database has been constructed based on metadata and data exchange schemas. A data classification system has been established from the perspectives of businesses, processes,and entities. A BIM(Building Information Modelling) model data extraction scheme is proposed based on field similarity matching and a document content extraction scheme is proposed based on image recognition. A railway green performance basic data collection system has been developed, achieving efficient collection and integrated management of railway green performance basic data. This system can provide data support for applications such as railway carbon emissions accounting, green cost-benefit analysis, and evaluation of green design solutions.展开更多
The radio-occultation observations taken by Tianwen-1 are aiming to study the properties of solar wind.A new method of frequency fluctuation(FF)estimation is presented for processing the down-link signals of Tianwen-1...The radio-occultation observations taken by Tianwen-1 are aiming to study the properties of solar wind.A new method of frequency fluctuation(FF)estimation is presented for processing the down-link signals of Tianwen-1 during the occultation period to study the properties of the coronal plasma at the heliocentric distances of 4.48–19 R_(⊙).Because of low S/N as well as the phase fluctuation phenomena caused by solar activity,a Kalman based on polynomial prediction methods is proposed to avoid the phase locked loop loss lock.A new detrend method based on multi-level iteration correction is proposed to estimate Doppler shift to get more accurate power density spectra of FF in the low frequency region.The data analyze procedure is used to get the properties of the solar corona during the occultation.The method was finally verified at the point when the solar offset is 5.7 R_(⊙),frequency tracking was successfully performed on data with a carrier-to-noise ratio of about 28 dBHz.The density spectra obtained by the improved method are basically the same when the frequency is greater than 2 mHz,the uncertainty in the result of the rms of the FF obtained by removing the trend term with different order polynomials is less than 3.3%.The data without eliminating interference show a large error for different detrending orders,which justifies the need for an improved approach.Finally,the frequency fluctuation results combined with the information on intensity fluctuation obtained by the new method are compared with the results of the integrated Space Weather Analysis system and theoretical formula,which verifies that the processing results in this paper have a certain degree of credibility.展开更多
The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement method...The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods,and is being widely used in the field of ocean observation.Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles.The two methods have their advantages and shortcomings.The shear method calculates the value of current shear more accurately,while the accuracy in an absolute value of the current is lower.The inverse method calculates the absolute value of the current velocity more accurately,but the current shear is less accurate.Based on the shear method,this paper proposes a layering shear method to calculate the current velocity profile by“layering averaging”,and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific,forming an independent LADCP data processing system.The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity,while retaining the advantages of the shear method in the calculation of a value of the current shear.展开更多
With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive opti...With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications.展开更多
文摘This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technology,focusing on analyzing the current application status of computer science and technology in big data,including data storage,data processing,and data analysis.Then,it proposes development strategies for big data processing.Computer science and technology play a vital role in big data processing by providing strong technical support.
基金funding from the“Talent Introduction Scientific Research Start-Up Fund”of Shandong University of Science and Technology(Grant number 0104060510217)the“Open Fund of State Key Laboratory of Geodesy and Earth’s Dynamics”(Grant number SKLGED2021-3-5)。
文摘Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,but also transferred in real time by a radio-link to the NOAA through the GOES satellite.The new ET34-ANA-V80 version of ETERNA,initially developed for Earth Tides analysis,is now able to analyze ocean tides records.Through a two-step validation scheme,we took advantage of the flexibility of this new version,operated in conjunction with the preprocessing facilities of the Tsoft software,to recover co rrected data series able to model sea-level variations after elimination of the ocean tides signal.We performed the tidal analysis of the tide gauge data with the highest possible selectivity(optimal wave grouping)and a maximum of additional terms(shallow water constituents).Our goal was to provide corrected data series and modelled ocean tides signal to compute tide-free sea-level variations as well as tidal prediction models with centimeter precision.We also present in this study the characteristics of the ocean tides in French Polynesia and preliminary results concerning the non-tidal variations of the sea level concerning the tide gauge setting.
基金Supported by the National Key R&D Program of China(No.2016YFC0303900)the Laoshan Laboratory(Nos.MGQNLM-KF201807,LSKJ202203604)the National Natural Science Foundation of China(No.42106072)。
文摘The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.
文摘Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.
文摘Timestamps play a key role in process mining because it determines the chronology of which events occurred and subsequently how they are ordered in process modelling.The timestamp in process mining gives an insight on process performance,conformance,and modelling.This therefore means problems with the timestamp will result in misrepresentations of the mined process.A few articles have been published on the quantification of data quality problems but just one of the articles at the time of this paper is based on the quantification of timestamp quality problems.This article evaluates the quality of timestamps in event log across two axes using eleven quality dimensions and four levels of potential data quality problems.The eleven data quality dimensions were obtained by doing a thorough literature review of more than fifty process mining articles which focus on quality dimensions.This evaluation resulted in twelve data quality quantification metrics and the metrics were applied to the MIMIC-ll dataset as an illustration.The outcome of the timestamp quality quantification using the proposed typology enabled the user to appreciate the quality of the event log and thus makes it possible to evaluate the risk of carrying out specific data cleaning measures to improve the process mining outcome.
基金supported by the National Key Research and Development Program under Grant 2022YFB3303702the Key Program of National Natural Science Foundation of China under Grant 61931001+1 种基金supported by the National Natural Science Foundation of China under Grant No.62203368the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1440。
文摘This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.
基金supported by the National Natural Science Foundation of China(NSFC)(61831002,62001076)the General Program of Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-MSX0726,No.cstc2020jcyjmsxmX0878).
文摘Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms.
基金supported by the National Natural Science Foundation of China(22178190)。
文摘In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
文摘One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier.
基金supported by the National Natural Science Foundation of China(Grant Nos.42325406 and 42304187)the China Postdoctoral Science Foundation(Grant No.2023M733476)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR082)the National Key R&D Program of China(Grant No.2022YFF0503203)the Key Research Program of the Institute of Geology and GeophysicsChinese Academy of Sciences(Grant Nos.IGGCAS-202101 and IGGCAS-202401).
文摘The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.
文摘Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria allows us to uncover mechanisms behind the gravity interaction and understand the underlying physical processes that contribute to the formation of large-scale structures such as galaxies.We use a segmentation process using intensity thresholding and the k-means clustering algorithm to analyze radio galaxy images.We employ a symmetry criterion and explore the relation between morphological symmetry in radio maps and host galaxy properties.Optical properties(stellar mass,black hole mass,optical size(R_(50)),concentration,stellar mass surface density(μ_(50)),and stellar age)and radio properties(radio flux density,radio luminosity,and radio size)are considered.We found that there is a correlation between symmetry and radio size,indicating larger radio sources have smaller symmetry indices.Therefore,size of radio sources should be considered in any investigation of symmetry.Weak correlations are also observed with other properties,such as R_(50)for FRI galaxies and stellar age.We compare the symmetry differences between FRI and FRII radio galaxies.FRII galaxies show higher symmetry in 1.4 GHz and 150 MHz maps.Investigating the influence of radio source sizes,we discovered that this result is independent of the sizes of radio sources.These findings contribute to our understanding of the morphological properties and analyses of radio galaxies.
基金supported by Shanghai Artificial Intelligence Laboratory.
文摘This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.
文摘As developing and emerging nations move away from the periphery and start realising their collective importance and growing value in the transitioning of global geopolitics,a change of narrative and perception is taking shape.Since 2001,the Boao Forum for Asia(BFA),often dubbed the“Davos of Asia,”has been central to this process of self-realisation and has had a huge impact on the global stage.
基金supported by the Science and Technology Research and Development Plan of China State Railway Group Co.,Ltd.(L2023Z001).
文摘This study addressed the issues related to the collection and management of basic data for railway green performance. A railway green performance basic database has been constructed based on metadata and data exchange schemas. A data classification system has been established from the perspectives of businesses, processes,and entities. A BIM(Building Information Modelling) model data extraction scheme is proposed based on field similarity matching and a document content extraction scheme is proposed based on image recognition. A railway green performance basic data collection system has been developed, achieving efficient collection and integrated management of railway green performance basic data. This system can provide data support for applications such as railway carbon emissions accounting, green cost-benefit analysis, and evaluation of green design solutions.
基金funded by the Astronomical Joint Fund of the National Natural Science Foundation of ChinaChinese Academy of Sciences(Grant Nos.U1831114,11941002,and 12073048)。
文摘The radio-occultation observations taken by Tianwen-1 are aiming to study the properties of solar wind.A new method of frequency fluctuation(FF)estimation is presented for processing the down-link signals of Tianwen-1 during the occultation period to study the properties of the coronal plasma at the heliocentric distances of 4.48–19 R_(⊙).Because of low S/N as well as the phase fluctuation phenomena caused by solar activity,a Kalman based on polynomial prediction methods is proposed to avoid the phase locked loop loss lock.A new detrend method based on multi-level iteration correction is proposed to estimate Doppler shift to get more accurate power density spectra of FF in the low frequency region.The data analyze procedure is used to get the properties of the solar corona during the occultation.The method was finally verified at the point when the solar offset is 5.7 R_(⊙),frequency tracking was successfully performed on data with a carrier-to-noise ratio of about 28 dBHz.The density spectra obtained by the improved method are basically the same when the frequency is greater than 2 mHz,the uncertainty in the result of the rms of the FF obtained by removing the trend term with different order polynomials is less than 3.3%.The data without eliminating interference show a large error for different detrending orders,which justifies the need for an improved approach.Finally,the frequency fluctuation results combined with the information on intensity fluctuation obtained by the new method are compared with the results of the integrated Space Weather Analysis system and theoretical formula,which verifies that the processing results in this paper have a certain degree of credibility.
基金The National Natural Science Foundation of China under contract No.42206033the Marine Geological Survey Program of China Geological Survey under contract No.DD20221706+1 种基金the Research Foundation of National Engineering Research Center for Gas Hydrate Exploration and Development,Innovation Team Project,under contract No.2022GMGSCXYF41003the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,under contract No.JG2006.
文摘The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods,and is being widely used in the field of ocean observation.Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles.The two methods have their advantages and shortcomings.The shear method calculates the value of current shear more accurately,while the accuracy in an absolute value of the current is lower.The inverse method calculates the absolute value of the current velocity more accurately,but the current shear is less accurate.Based on the shear method,this paper proposes a layering shear method to calculate the current velocity profile by“layering averaging”,and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific,forming an independent LADCP data processing system.The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity,while retaining the advantages of the shear method in the calculation of a value of the current shear.
基金National Natural Science Foundation of China(No.42022025)。
文摘With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications.