Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the ve...Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.展开更多
Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue...Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue-wave-like phenomena by selecting special parameters. The equation can be reduced to the Gerdjikov–Ivanov equation as well as its bilinear forms and its solutions.展开更多
The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system ...The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system possesses the Painlevé property in both the principal and secondary branches. Then, the consistent Riccati expansion (CRE) method is applied to the coupled mKdV-BLMP system. As a result, it is CRE solvable for the principal branch while non-CRE solvable for the secondary branch. Finally, starting from the last consistent differential equation in the CRE solvable case, soliton, multiple resonant soliton solutions and soliton-cnoidal wave interaction solutions are constructed explicitly.展开更多
The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditiona...The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme.展开更多
In this paper,new infinite sequence complex solutions of the coupled Kd V equations are constructed with the help of function transformation and the second kind of elliptic equation.First of all,according to the funct...In this paper,new infinite sequence complex solutions of the coupled Kd V equations are constructed with the help of function transformation and the second kind of elliptic equation.First of all,according to the function transformation,the coupled Kd V equations are changed into the second kind of elliptic equation.Secondly,the new solutions and Bäcklund transformation of the second kind of elliptic equation are applied to search for new infinite sequence complex solutions of the coupled Kd V equations.These solutions include new infinite sequence complex solutions composed by Jacobi elliptic function,hyperbolic function and triangular function.展开更多
Fluid-solid interaction problems have been studied q uite extensively in the past years. Rotor-bearing system is a typical example. Fluid field is changed under the exciting of rotor vibration. On the same ti me, a ne...Fluid-solid interaction problems have been studied q uite extensively in the past years. Rotor-bearing system is a typical example. Fluid field is changed under the exciting of rotor vibration. On the same ti me, a net force caused by fluid pressure exerts on rotor, which will change roto r vibration. So, the fluid-solid coupled analysis method must be used. Traditionally, numerical difference method was used to solve fluid problems. The coupled fluid-solid equation could not be set up based on the method. It is no t until finite element method was used in fluid dynamics area then can the coupl ed dynamics be researched. Recently many experimental, analytical and numerical studies have been used in the area . But in these investigations, it is a ssumed that the solid vibration could not be influenced by fluid. In the other w ords, the force exerted on solid from fluid was neglected in the papers. So, the models built were some kinds of semi-coupled model only. In this paper, the Galerkin finite-element method, two-dimension vibration equ ation of rigid body and Navier-Stokes equations are used to build a full-coupl ed fluid-solid model in rotor-bearing system. Some assumptions are taken: 1) In fluid equation, the nonlinear terms are relatively small and neglected. 2) The gravity takes no effect on this system. 3) The bearing and the rotor are long. Flow and leakage along the axis is neglec ted. 4) The fluid is a kind of Newtonian incondensable viscous fluid. 5) The rotor is considered to be a rigid body. Using the model established, we calculated all the examples given by paper , results show the error are less than 7%. So the full-coupled model is built c orrectly. Examples are given in the end of the paper. After analyzing the examples, we get some conclusions: 1) In rotor-bearing system, while being taken under two conditions that whether coupled method is taken or not, difference of pressure and vibration amplitude could reach 76% and 120%. Therefore coupled method must be taken to investigate fluid-solid system. 1) Amplitude of fluid pressure can be more or less influenced by rotor unbalance , gap, eccentricity and other factors. 2) By using coupling method, results show that the amplitudes of vibration and p ressure are greater than ignoring the method. It should be paid more attention t o.展开更多
Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a...Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a suspended-cable-stayed beam. In the PDEs, the curvature of main cables and the deformation of cable stays are taken into account. The dynamics of the struc- ture is investigated based on the ODEs when the structure is subjected to a harmonic excitation in the presence of both high-frequency principle resonance and 1:2 internal resonance. It is found that there are typical jumps and saturation phenomena of the vibration amplitude in the struc- ture. And the structure may present quasi-periodic vibration or chaos, if the stiffness of the cable stays membrane and frequency of external excitation are disturbed.展开更多
Based on the pioneer work of Konishi et al,a new control method is proposed to suppress the trafficcongestion in the coupled map (CM) car-following model under open boundary condition.The influence of the followingcar...Based on the pioneer work of Konishi et al,a new control method is proposed to suppress the trafficcongestion in the coupled map (CM) car-following model under open boundary condition.The influence of the followingcar to the system has been considered.Our method and that presented by Konishi et al.[Phys.Rev.E 60 (1999) 4000]are compared.Although both the methods could suppress the traffic jam,the simulation results show that the temporalbehavior obtained by ours is better than that proposed by the Konishi's et al.The simulation results are consistent withthe theoretical analysis.展开更多
The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Ha...The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.展开更多
In this paper, Lie symmetry is investigated for a new integrable coupled Korteweg-de Vries (KdV) equation system. Using some symmetry subalgebra of the equation system, we obtain five types of the significant simila...In this paper, Lie symmetry is investigated for a new integrable coupled Korteweg-de Vries (KdV) equation system. Using some symmetry subalgebra of the equation system, we obtain five types of the significant similarity reductions. Abundant solutions of the coupled KdV equation system, such as the solitary wave solution, exponential solution, rational solution and polynomial solution, etc. are obtained from the reduced equations. Especially, one type of group-invarlant solution of reduced equations can be acquired by means of the Painlevé I transcendent function.展开更多
This study successfully reveals the dark,singular solitons,periodic wave and singular periodic wave solutions of the(1+1)-dimensional coupled nonlinear Schr?dinger equation by using the extended rational sine-cosine a...This study successfully reveals the dark,singular solitons,periodic wave and singular periodic wave solutions of the(1+1)-dimensional coupled nonlinear Schr?dinger equation by using the extended rational sine-cosine and rational sinh-cosh methods.The modulation instability analysis of the governing model is presented.By using the suitable values of the parameters involved,the 2-,3-dimensional and the contour graphs of some of the reported solutions are plotted.展开更多
Chaotic sequences are basically ergodic random sequences. By improving correlativity of a chaotic signal, the chaotic dynamic system can be controlled to converge to its equilibrium point and, more significantly, to i...Chaotic sequences are basically ergodic random sequences. By improving correlativity of a chaotic signal, the chaotic dynamic system can be controlled to converge to its equilibrium point and, more significantly, to its multi-periodic orbits. Mathematical theory analysis is carried out and some computer simulation results are provided to support such controllability of the chaotic Henon system and the discrete coupled map lattice.展开更多
In this paper,we present solutions for the one-dimensional coupled nonlinear Schrödinger(CNLS)equations by the Constrained Interpolation Profile-Basis Set(CIP-BS)method.This method uses a simple polynomial basis ...In this paper,we present solutions for the one-dimensional coupled nonlinear Schrödinger(CNLS)equations by the Constrained Interpolation Profile-Basis Set(CIP-BS)method.This method uses a simple polynomial basis set,by which physical quantities are approximated with their values and derivatives associated with grid points.Nonlinear operations on functions are carried out in the framework of differential algebra.Then,by introducing scalar products and requiring the residue to be orthogonal to the basis,the linear and nonlinear partial differential equations are reduced to ordinary differential equations for values and spatial derivatives.The method gives stable,less diffusive,and accurate results for the CNLS equations.展开更多
The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many ...The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many types of doubly periodic traveling wave solutions are obtained. Under limiting conditions these solutions are reduced into solitary wave solutions.展开更多
In this article, we construct the exact traveling wave solutions for nonlinear evolution equations in the mathematical physics via the modified Kawahara equation, the nonlinear coupled KdV equations and the classical ...In this article, we construct the exact traveling wave solutions for nonlinear evolution equations in the mathematical physics via the modified Kawahara equation, the nonlinear coupled KdV equations and the classical Boussinesq equations, by using a generalized (G'/G)-expansion method, where G satisfies the Jacobi elliptic equation. Many exact solutions in terms of Jacobi elliptic functions are obtained.展开更多
In this article,we establish solitary wave solutions to the Estevez-MansfieldClarkson(EMC)equation and the coupled sine-Gordon equations which are model equations to analyze the formation of shapes in liquid drops,su...In this article,we establish solitary wave solutions to the Estevez-MansfieldClarkson(EMC)equation and the coupled sine-Gordon equations which are model equations to analyze the formation of shapes in liquid drops,surfaces of negative constant curvature,etc.through contriving the generalized Kudryashov method.The extracted results introduce several types’solitary waves,such as the kink soliton,bell-shape soliton,compacton,singular soliton,peakon and other sort of soliton for distinct valuation of the unknown parameters.The achieved analytic solutions are interpreted in details and their 2D and 3D graphs are sketched.The obtained solutions and the physical structures explain the soliton phenomenon and reproduce the dynamic properties of the front of the travelling wave deformation generated in the dispersive media.It shows that the generalized Kudryashov method is powerful,compatible and might be used in further works to found novel solutions for other types of nonlinear evolution equations ascending in physical science and engineering.展开更多
基金Project supported by the National Key Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10532060, 10602025 and 10802042)+1 种基金the Natural Science Foundation of Ningbo (Grant Nos 2007A610050, 2009A610014 and 2009A610154)K.C. Wong Magna Fund in Ningbo University
文摘Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11671177 and 11271168the Jiangsu Qing Lan Project(2014)the Six Talent Peaks Project of Jiangsu Province under Grant No 2016-JY-08
文摘Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue-wave-like phenomena by selecting special parameters. The equation can be reduced to the Gerdjikov–Ivanov equation as well as its bilinear forms and its solutions.
基金Supported by the Natural Science Foundation of Zhejiang Province of China under Grant No LY14A010005
文摘The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system possesses the Painlevé property in both the principal and secondary branches. Then, the consistent Riccati expansion (CRE) method is applied to the coupled mKdV-BLMP system. As a result, it is CRE solvable for the principal branch while non-CRE solvable for the secondary branch. Finally, starting from the last consistent differential equation in the CRE solvable case, soliton, multiple resonant soliton solutions and soliton-cnoidal wave interaction solutions are constructed explicitly.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072117 and 61074142)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6110007)+3 种基金Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Z201119278)the Natural Science Foundation of Ningbo City(Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)K.C.Wong Magna Fund in Ningbo University
文摘The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme.
基金Supported by the Natural Natural Science Foundation of China(Grant No:11361040)Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region,China(Grant No:NJZY16180)Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No:2015MS0128)。
文摘In this paper,new infinite sequence complex solutions of the coupled Kd V equations are constructed with the help of function transformation and the second kind of elliptic equation.First of all,according to the function transformation,the coupled Kd V equations are changed into the second kind of elliptic equation.Secondly,the new solutions and Bäcklund transformation of the second kind of elliptic equation are applied to search for new infinite sequence complex solutions of the coupled Kd V equations.These solutions include new infinite sequence complex solutions composed by Jacobi elliptic function,hyperbolic function and triangular function.
文摘Fluid-solid interaction problems have been studied q uite extensively in the past years. Rotor-bearing system is a typical example. Fluid field is changed under the exciting of rotor vibration. On the same ti me, a net force caused by fluid pressure exerts on rotor, which will change roto r vibration. So, the fluid-solid coupled analysis method must be used. Traditionally, numerical difference method was used to solve fluid problems. The coupled fluid-solid equation could not be set up based on the method. It is no t until finite element method was used in fluid dynamics area then can the coupl ed dynamics be researched. Recently many experimental, analytical and numerical studies have been used in the area . But in these investigations, it is a ssumed that the solid vibration could not be influenced by fluid. In the other w ords, the force exerted on solid from fluid was neglected in the papers. So, the models built were some kinds of semi-coupled model only. In this paper, the Galerkin finite-element method, two-dimension vibration equ ation of rigid body and Navier-Stokes equations are used to build a full-coupl ed fluid-solid model in rotor-bearing system. Some assumptions are taken: 1) In fluid equation, the nonlinear terms are relatively small and neglected. 2) The gravity takes no effect on this system. 3) The bearing and the rotor are long. Flow and leakage along the axis is neglec ted. 4) The fluid is a kind of Newtonian incondensable viscous fluid. 5) The rotor is considered to be a rigid body. Using the model established, we calculated all the examples given by paper , results show the error are less than 7%. So the full-coupled model is built c orrectly. Examples are given in the end of the paper. After analyzing the examples, we get some conclusions: 1) In rotor-bearing system, while being taken under two conditions that whether coupled method is taken or not, difference of pressure and vibration amplitude could reach 76% and 120%. Therefore coupled method must be taken to investigate fluid-solid system. 1) Amplitude of fluid pressure can be more or less influenced by rotor unbalance , gap, eccentricity and other factors. 2) By using coupling method, results show that the amplitudes of vibration and p ressure are greater than ignoring the method. It should be paid more attention t o.
基金supported by the National Natural Science Foundation of China(Nos.10672121 and 11072125)
文摘Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a suspended-cable-stayed beam. In the PDEs, the curvature of main cables and the deformation of cable stays are taken into account. The dynamics of the struc- ture is investigated based on the ODEs when the structure is subjected to a harmonic excitation in the presence of both high-frequency principle resonance and 1:2 internal resonance. It is found that there are typical jumps and saturation phenomena of the vibration amplitude in the struc- ture. And the structure may present quasi-periodic vibration or chaos, if the stiffness of the cable stays membrane and frequency of external excitation are disturbed.
基金Supported by the National Natural Science Foundation of China under Grant Nos.2006CB705500,10532060,and 60904068the Natural Science Foundation of NingBo under Grant Nos.2009B21003,2009A610154,2009A610014K.C.Wong Magna Fund in Ningbo University
文摘Based on the pioneer work of Konishi et al,a new control method is proposed to suppress the trafficcongestion in the coupled map (CM) car-following model under open boundary condition.The influence of the followingcar to the system has been considered.Our method and that presented by Konishi et al.[Phys.Rev.E 60 (1999) 4000]are compared.Although both the methods could suppress the traffic jam,the simulation results show that the temporalbehavior obtained by ours is better than that proposed by the Konishi's et al.The simulation results are consistent withthe theoretical analysis.
文摘The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10071033), the Natural Science Foundation of Jiangsu Province, China (Grant No BK2002003), and the Technology Innovation Plan for Postgraduate of Jiangsu Province in 2006 (Grant No 72).Acknowledgment 0ne of the authors (Qian S P) is indebted to Professor Lou S Y for his helpful discussion.
文摘In this paper, Lie symmetry is investigated for a new integrable coupled Korteweg-de Vries (KdV) equation system. Using some symmetry subalgebra of the equation system, we obtain five types of the significant similarity reductions. Abundant solutions of the coupled KdV equation system, such as the solitary wave solution, exponential solution, rational solution and polynomial solution, etc. are obtained from the reduced equations. Especially, one type of group-invarlant solution of reduced equations can be acquired by means of the Painlevé I transcendent function.
文摘This study successfully reveals the dark,singular solitons,periodic wave and singular periodic wave solutions of the(1+1)-dimensional coupled nonlinear Schr?dinger equation by using the extended rational sine-cosine and rational sinh-cosh methods.The modulation instability analysis of the governing model is presented.By using the suitable values of the parameters involved,the 2-,3-dimensional and the contour graphs of some of the reported solutions are plotted.
基金Supported by the National Natural Science Foundation of China (No.60172065)
文摘Chaotic sequences are basically ergodic random sequences. By improving correlativity of a chaotic signal, the chaotic dynamic system can be controlled to converge to its equilibrium point and, more significantly, to its multi-periodic orbits. Mathematical theory analysis is carried out and some computer simulation results are provided to support such controllability of the chaotic Henon system and the discrete coupled map lattice.
文摘In this paper,we present solutions for the one-dimensional coupled nonlinear Schrödinger(CNLS)equations by the Constrained Interpolation Profile-Basis Set(CIP-BS)method.This method uses a simple polynomial basis set,by which physical quantities are approximated with their values and derivatives associated with grid points.Nonlinear operations on functions are carried out in the framework of differential algebra.Then,by introducing scalar products and requiring the residue to be orthogonal to the basis,the linear and nonlinear partial differential equations are reduced to ordinary differential equations for values and spatial derivatives.The method gives stable,less diffusive,and accurate results for the CNLS equations.
基金Project supported by the National Natural Science Foundation of China (Grant No.10272071)
文摘The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many types of doubly periodic traveling wave solutions are obtained. Under limiting conditions these solutions are reduced into solitary wave solutions.
文摘In this article, we construct the exact traveling wave solutions for nonlinear evolution equations in the mathematical physics via the modified Kawahara equation, the nonlinear coupled KdV equations and the classical Boussinesq equations, by using a generalized (G'/G)-expansion method, where G satisfies the Jacobi elliptic equation. Many exact solutions in terms of Jacobi elliptic functions are obtained.
基金the Research Grant No.:A-1220/5/52/RU/Science-37/2019-2020 and the authors acknowledge this support.
文摘In this article,we establish solitary wave solutions to the Estevez-MansfieldClarkson(EMC)equation and the coupled sine-Gordon equations which are model equations to analyze the formation of shapes in liquid drops,surfaces of negative constant curvature,etc.through contriving the generalized Kudryashov method.The extracted results introduce several types’solitary waves,such as the kink soliton,bell-shape soliton,compacton,singular soliton,peakon and other sort of soliton for distinct valuation of the unknown parameters.The achieved analytic solutions are interpreted in details and their 2D and 3D graphs are sketched.The obtained solutions and the physical structures explain the soliton phenomenon and reproduce the dynamic properties of the front of the travelling wave deformation generated in the dispersive media.It shows that the generalized Kudryashov method is powerful,compatible and might be used in further works to found novel solutions for other types of nonlinear evolution equations ascending in physical science and engineering.