In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the hi...In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.展开更多
Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model take...Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model takes into account attenuation, volume backscattering, and sea surface perturbation by raindrops under rain conditions. A match-up dataset is built to evaluate rain effects, in combination with the Jason-1 normalized radar cross section, precipitation radar data from the Tropical Rainfall Measuring Mission, and sea surface wind reanalysis data from the European Centre for Medium-Range Weather Forecasts. The results show that rain-induced surface perturbation backscatter increases with rain rate at Ku-band, but their correlation at C-band is poor. In addition, rain surface perturbation and attenuation have major effects on radar altimeter wind measurements. Finally, a rain correction model for Jason-1 winds is developed and validation results prove its ability to reduce rain-induced inaccuracies in wind retrievals.展开更多
Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe u...Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected.展开更多
Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents...Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.展开更多
According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rai...According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rain). The CMF+Rain model which is based on the NASA scatterometer-2 (NSCAT2) GMF is presented to compensate for the effects of rain on cyclone wind retrieval. With the multiple solution scheme (MSS), the noise of wind retrieval is effectively suppressed, but the influence of the background increases. It will cause a large wind direction error in ambiguity removal when the background error is large. However, this can be mitigated by the new ambiguity removal method of Tikhonov regularization as proved in the simulation experiments. A case study on an extratropical cyclone of hurricane observed with SeaWinds at 25-km resolution shows that the retrieved wind speed for areas with rain is in better agreement with that derived from the best track analysis for the GMF+Rain model, but the wind direction obtained with the two-dimensional variational (2DVAR) ambiguity removal is incorrect. The new method of Tikhonov regularization effectively improves the performance of wind direction ambiguity removal through choosing appropriate regularization parameters and the retrieved wind speed is almost the same as that obtained from the 2DVAR.展开更多
With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the predi...With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the prediction abilities of Zebiak-Cane coupled ocean-atmosphere model (ZC coupled model) with NCEPWSA and FSUWSA serving respectively as initialization wind are compared. The results are as follows. The distribution feature of NCEPWSA matches better with that of the observed SSTA than counterpart of FSUWSA both in 1980s and in 1990s; The ZC ocean model has a better skill under the forcing of NCEPWSA than that of FSUWSA, especially in 1990s. Meanwhile, the forecast abilities of the ZC coupled model in 1990s as well as in 1980s have been improved employing NCEPWSA as initialization wind instead of FSUWSA. Particularly, it succeeded in predicting 1997/1998 E1 Nino 6 to 8 months ahead, further analysis shows that on the antecedent and onset stages of the 1997/1998 E1 Nino event, the horizontal cold and warm distribution characteristics of the simulated SSTA from ZC ocean model, with NCEPWSA forcing compared to FSUWSA forcing, match better with counterparts of the corresponding observed SSTA, whereby providing better predication initialization conditions for ZC coupled model, which, in turn, is favorable to improve the forecast ability of the coupled model.展开更多
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a con...The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.展开更多
The principles that govern the operation of an open and a closed evaporator are relevant for the understanding of the open and “closed” Earth’s atmospheric behaviors, and are thus described. In these greenhouses, t...The principles that govern the operation of an open and a closed evaporator are relevant for the understanding of the open and “closed” Earth’s atmospheric behaviors, and are thus described. In these greenhouses, the water is included, otherwise the heat and mass balances do not match. It is incorrect to consider the radiation as the only energy transfer factor for an atmospheric warming. Demonstrations show that when the greenhouse effect and the cloud cover increase, the evaporation and the wind naturally decrease. Researchers did not understand why reductions in surface solar radiation and pan evaporation have been simultaneous with increased air temperature, cloudiness and precipitation for the last decades. It is an error to state that the evaporation increases based solely on the water and/or air temperatures increase. Also, researchers did not comprehend why in the last 50 years the clouds and the precipitation increased while the evaporation decreased and they named such understanding as the “evaporation paradox”, while others “found” “the cause” violating the laws of thermodynamics, but more precipitation is naturally conciliatory with less evaporation. The same principle that increases the formation of clouds may cause less rainfall. Several measurements confirm the working principles of greenhouses described in this paper. The hydrological cycle is analyzed and it was also put in form of equation, which analyses have never been done before. The human influence alters the velocity of the natural cycles as well as the atmospheric heat and mass balances, and the evaporation has not been the only source for the cloud formation. It is demonstrated that the Earth’s greenhouse effect has increased in some places and this proof is not based only on temperatures.展开更多
To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated accordi...To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated according to wind shear effects, and the fluctuating wind velocity time series of the wind turbine were simulated by a harmony superposition method. A dynamic finite element method (FEM) was used to calculate the wind-induced response of the blades and tower. Wind-induced responses of the tower were calculated in two cases (one included the blade-tower coupling effect, and the other only added the mass of blades and the hub at the top of the tower), and then the maximal displacements at the top of the tower of the tow cases were compared with each other. As a result of the influence of the blade-tower coupling effect and the total base shear of the blades, the maximal displacement of the first case increased nearly by 300% compared to the second case. To obtain more precise analysis, the blade-tower coupling effect and the total base shear of the blades should be considered simultaneously in the design of wind turbine towers.展开更多
Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMO...Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to remove rain effects on "Jason-1" normalized radar cross section (NRCS); Hurricane Research Division (HRD) wind sPeed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with "Jason-l" NRCS. Then, an improved "Jason-l" wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.展开更多
Top concepts adopted by the current science on climate changes or atmospheric warming are not in agreement with the first principles of the physics. This paper presents a new understanding on the atmospheric behaviors...Top concepts adopted by the current science on climate changes or atmospheric warming are not in agreement with the first principles of the physics. This paper presents a new understanding on the atmospheric behaviors. For example, the radiation is not the only factor that influences the air temperature, as the law of conservation of energy defines and as shown physically and mathematically in this article. The Sun is not the only heat source for the atmosphere because there is generation of heat at the Earth’s surface by human activities. It is also shown that the water vapor is not a null effect and that the water vapor cannot be removed from the atmosphere for air temperature, greenhouse effect and climate changes considerations, in contrast to the current literature beliefs. The “feedback” concept is unfounded and invalid. The literature also says that “water vapor increases as the Earth’s atmosphere warms”, but this is also incorrect. The above equivocated understanding is accompanied by another one which believes that more water evaporates if the air temperature increases, but it is not in this way. These demonstrations and other authors’ surveys showing that in the last decades the planet became wetter eliminate the literature concept that the water vapor does not have influence on the atmospheric warming/cooling. The conventional water cycle is related to the mass of water (mass of evaporation mass of precipitation) and then the physical and mathematical principles of the new hydrological cycle that includes the direct human influence are shown. The same is done for the carbon cycle. It is solved the problem on why the wind speed on Venus is very high above the cloud deck while it is stagnant below it, being this the same physical principle valid for the Earth’s cloud cover. In the atmosphere, all the corresponding principles are the same, only their amounts change. It is demonstrated that the CO2 is not decisive for building and changing the temperatures of Venus, Mars, Mercury, Jupiter and Earth. Ice cores are not valid for “determining” “past” temperatures of the planet, because the mass of their air bubbles may be old, but the corresponding temperatures are not.展开更多
Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind directio...Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind direction.From the dimension of the engineering sector,this paper introduces the vine copula to model the joint probability distribution(JPD)of wind speed,wind direction and rain intensity based on the field data in Yangjiang,China during 1971–2020.First,the profiles of wind and rain in the studied area are statistically analyzed,and the original rainfall amounts are converted into short-term rain intensity.Then,the marginal distributions of individual variables and their pairwise dependence structures are built,followed by the development of the trivariate joint distribution model.The results show that the constructed vine copula-based model can well characterize the dependence structure between wind speed,wind direction and rain intensity.Meanwhile,the JPD characteristics of wind speed and rain intensity show significant variations depending on wind direction,thus the effect of wind direction cannot be neglected.The proposed JPD model will be conducive for reasonable and precise performance assessment of structures subjected to multiple hazards of wind and rain actions.展开更多
基金financially supported by the Ministry of Industry and Information Technology of China(Grant No.[2016]546)
文摘In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.Y0S04300KB)the Major Program for the Research Equipment of Chinese Academy of Sciences (No.YZ200946)
文摘Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model takes into account attenuation, volume backscattering, and sea surface perturbation by raindrops under rain conditions. A match-up dataset is built to evaluate rain effects, in combination with the Jason-1 normalized radar cross section, precipitation radar data from the Tropical Rainfall Measuring Mission, and sea surface wind reanalysis data from the European Centre for Medium-Range Weather Forecasts. The results show that rain-induced surface perturbation backscatter increases with rain rate at Ku-band, but their correlation at C-band is poor. In addition, rain surface perturbation and attenuation have major effects on radar altimeter wind measurements. Finally, a rain correction model for Jason-1 winds is developed and validation results prove its ability to reduce rain-induced inaccuracies in wind retrievals.
文摘Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected.
文摘Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rain). The CMF+Rain model which is based on the NASA scatterometer-2 (NSCAT2) GMF is presented to compensate for the effects of rain on cyclone wind retrieval. With the multiple solution scheme (MSS), the noise of wind retrieval is effectively suppressed, but the influence of the background increases. It will cause a large wind direction error in ambiguity removal when the background error is large. However, this can be mitigated by the new ambiguity removal method of Tikhonov regularization as proved in the simulation experiments. A case study on an extratropical cyclone of hurricane observed with SeaWinds at 25-km resolution shows that the retrieved wind speed for areas with rain is in better agreement with that derived from the best track analysis for the GMF+Rain model, but the wind direction obtained with the two-dimensional variational (2DVAR) ambiguity removal is incorrect. The new method of Tikhonov regularization effectively improves the performance of wind direction ambiguity removal through choosing appropriate regularization parameters and the retrieved wind speed is almost the same as that obtained from the 2DVAR.
基金Natural Science Foundation of China (40275016)Science and Technology DevelopmentProject for the Shanghai Meteorological Bureau (0301)
文摘With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the prediction abilities of Zebiak-Cane coupled ocean-atmosphere model (ZC coupled model) with NCEPWSA and FSUWSA serving respectively as initialization wind are compared. The results are as follows. The distribution feature of NCEPWSA matches better with that of the observed SSTA than counterpart of FSUWSA both in 1980s and in 1990s; The ZC ocean model has a better skill under the forcing of NCEPWSA than that of FSUWSA, especially in 1990s. Meanwhile, the forecast abilities of the ZC coupled model in 1990s as well as in 1980s have been improved employing NCEPWSA as initialization wind instead of FSUWSA. Particularly, it succeeded in predicting 1997/1998 E1 Nino 6 to 8 months ahead, further analysis shows that on the antecedent and onset stages of the 1997/1998 E1 Nino event, the horizontal cold and warm distribution characteristics of the simulated SSTA from ZC ocean model, with NCEPWSA forcing compared to FSUWSA forcing, match better with counterparts of the corresponding observed SSTA, whereby providing better predication initialization conditions for ZC coupled model, which, in turn, is favorable to improve the forecast ability of the coupled model.
文摘The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.
文摘The principles that govern the operation of an open and a closed evaporator are relevant for the understanding of the open and “closed” Earth’s atmospheric behaviors, and are thus described. In these greenhouses, the water is included, otherwise the heat and mass balances do not match. It is incorrect to consider the radiation as the only energy transfer factor for an atmospheric warming. Demonstrations show that when the greenhouse effect and the cloud cover increase, the evaporation and the wind naturally decrease. Researchers did not understand why reductions in surface solar radiation and pan evaporation have been simultaneous with increased air temperature, cloudiness and precipitation for the last decades. It is an error to state that the evaporation increases based solely on the water and/or air temperatures increase. Also, researchers did not comprehend why in the last 50 years the clouds and the precipitation increased while the evaporation decreased and they named such understanding as the “evaporation paradox”, while others “found” “the cause” violating the laws of thermodynamics, but more precipitation is naturally conciliatory with less evaporation. The same principle that increases the formation of clouds may cause less rainfall. Several measurements confirm the working principles of greenhouses described in this paper. The hydrological cycle is analyzed and it was also put in form of equation, which analyses have never been done before. The human influence alters the velocity of the natural cycles as well as the atmospheric heat and mass balances, and the evaporation has not been the only source for the cloud formation. It is demonstrated that the Earth’s greenhouse effect has increased in some places and this proof is not based only on temperatures.
基金supported by the National Natural Science Foundation of China (No. 50708015)the Program for New Century Excellent Talents in University (No. NCET-06-0270), China
文摘To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated according to wind shear effects, and the fluctuating wind velocity time series of the wind turbine were simulated by a harmony superposition method. A dynamic finite element method (FEM) was used to calculate the wind-induced response of the blades and tower. Wind-induced responses of the tower were calculated in two cases (one included the blade-tower coupling effect, and the other only added the mass of blades and the hub at the top of the tower), and then the maximal displacements at the top of the tower of the tow cases were compared with each other. As a result of the influence of the blade-tower coupling effect and the total base shear of the blades, the maximal displacement of the first case increased nearly by 300% compared to the second case. To obtain more precise analysis, the blade-tower coupling effect and the total base shear of the blades should be considered simultaneously in the design of wind turbine towers.
基金The National Natural Science Foundation of China under Nos 41201350 and 41228007the International Scientific and Technological Cooperation Projects of State Oceanic Adminstration under contact No.2011DFA22260the Knowledge Innovation Program of the Chinese Academy of Sciences under contact No.Y0S04300KB
文摘Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to remove rain effects on "Jason-1" normalized radar cross section (NRCS); Hurricane Research Division (HRD) wind sPeed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with "Jason-l" NRCS. Then, an improved "Jason-l" wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.
文摘Top concepts adopted by the current science on climate changes or atmospheric warming are not in agreement with the first principles of the physics. This paper presents a new understanding on the atmospheric behaviors. For example, the radiation is not the only factor that influences the air temperature, as the law of conservation of energy defines and as shown physically and mathematically in this article. The Sun is not the only heat source for the atmosphere because there is generation of heat at the Earth’s surface by human activities. It is also shown that the water vapor is not a null effect and that the water vapor cannot be removed from the atmosphere for air temperature, greenhouse effect and climate changes considerations, in contrast to the current literature beliefs. The “feedback” concept is unfounded and invalid. The literature also says that “water vapor increases as the Earth’s atmosphere warms”, but this is also incorrect. The above equivocated understanding is accompanied by another one which believes that more water evaporates if the air temperature increases, but it is not in this way. These demonstrations and other authors’ surveys showing that in the last decades the planet became wetter eliminate the literature concept that the water vapor does not have influence on the atmospheric warming/cooling. The conventional water cycle is related to the mass of water (mass of evaporation mass of precipitation) and then the physical and mathematical principles of the new hydrological cycle that includes the direct human influence are shown. The same is done for the carbon cycle. It is solved the problem on why the wind speed on Venus is very high above the cloud deck while it is stagnant below it, being this the same physical principle valid for the Earth’s cloud cover. In the atmosphere, all the corresponding principles are the same, only their amounts change. It is demonstrated that the CO2 is not decisive for building and changing the temperatures of Venus, Mars, Mercury, Jupiter and Earth. Ice cores are not valid for “determining” “past” temperatures of the planet, because the mass of their air bubbles may be old, but the corresponding temperatures are not.
基金supported by the National Natural Science Foundation of China (Grant Nos.52178489 and 52078106)the Young Scholars Program of Shandong University (Grant No.2017WLJH33)。
文摘Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind direction.From the dimension of the engineering sector,this paper introduces the vine copula to model the joint probability distribution(JPD)of wind speed,wind direction and rain intensity based on the field data in Yangjiang,China during 1971–2020.First,the profiles of wind and rain in the studied area are statistically analyzed,and the original rainfall amounts are converted into short-term rain intensity.Then,the marginal distributions of individual variables and their pairwise dependence structures are built,followed by the development of the trivariate joint distribution model.The results show that the constructed vine copula-based model can well characterize the dependence structure between wind speed,wind direction and rain intensity.Meanwhile,the JPD characteristics of wind speed and rain intensity show significant variations depending on wind direction,thus the effect of wind direction cannot be neglected.The proposed JPD model will be conducive for reasonable and precise performance assessment of structures subjected to multiple hazards of wind and rain actions.