With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the rou...With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.展开更多
A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond wi...A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond with wavelet transform sequence was established, finally wavelet random coupling model was obtained by wavelet reconstruction algorithm. Then, according to the rainfall data in crop growth period of Farm Chahayang from 1956 to 2008, the wavelet random coupling model was established to fit the model prediction test. The results showed that the prediction and fitting accuracy of the model was high, the model could reflect the rainfall variation regulation in the region, and it was a practical prediction model. It was very important for us to determine reasonably irrigation schedule and to use efficiency coefficient of precipitation resource.展开更多
Based on the representative sample survey data of more than 1 000 farmers in 101 villages of 25 counties of 5 provinces in China,within the framework of family collective decision-making,this paper studied the effects...Based on the representative sample survey data of more than 1 000 farmers in 101 villages of 25 counties of 5 provinces in China,within the framework of family collective decision-making,this paper studied the effects and heterogeneity of childcare and elderly caring on the off-farm employment mode of rural couples. It found that caring the children younger than 3 years old significantly reduces the possibility of offfarm employment of rural couples;conversely,if there is 60-80 years old member in the family,it will significantly increase the possibility of off-farm employment of rural couples or the wives. Caring the children above 12 years old or the elderly older than 80 years old reduces the possibility of off-farm employment of the husbands. Whether there is preschool education service facility in the village has no effect on the off-farm employment of the couples.展开更多
In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more prono...In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more pronounced.This may cause the system to experience small-signal instability during the fault steady-state.In this paper,multi-paralleled doubly fed induction generator(DFIG)-based wind farms(WFs)are taken as an example to study the dynamic coupling within a multi-fed system during fault steady-state of symmetrical low voltage ride-through(LVRT)in a weak grid.The analysis reveals that the dynamic coupling between WFs will introduce a damping shift to each WF.This inevitably affects the system’s dynamic stability and brings the risk of small-signal instability during fault steady-state in LVRT scenarios.Increasing the distance to fault location and fault severity will exacerbate the dynamic coupling between WFs.Because of the dynamic coupling,adjusting the control state of one WF will affect the stability of the remaining WFs in the system.Hence,a cooperative control strategy for multi-paralleled DFIG WFs is proposed to improve dynamic stability during LVRT.The analysis and the effectiveness of the proposed control strategy are verified by modal analysis and simu-lation.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(LY19A020001).
文摘With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.
基金Supported by Doctoral Foundation Program of Northeast Agricultural University (E090202)Science and Technology Research Program of Educational Committee of Heilongjiang Province, China (11551044)
文摘A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond with wavelet transform sequence was established, finally wavelet random coupling model was obtained by wavelet reconstruction algorithm. Then, according to the rainfall data in crop growth period of Farm Chahayang from 1956 to 2008, the wavelet random coupling model was established to fit the model prediction test. The results showed that the prediction and fitting accuracy of the model was high, the model could reflect the rainfall variation regulation in the region, and it was a practical prediction model. It was very important for us to determine reasonably irrigation schedule and to use efficiency coefficient of precipitation resource.
基金Supported by Project of National Natural Science Foundation(71861147003)
文摘Based on the representative sample survey data of more than 1 000 farmers in 101 villages of 25 counties of 5 provinces in China,within the framework of family collective decision-making,this paper studied the effects and heterogeneity of childcare and elderly caring on the off-farm employment mode of rural couples. It found that caring the children younger than 3 years old significantly reduces the possibility of offfarm employment of rural couples;conversely,if there is 60-80 years old member in the family,it will significantly increase the possibility of off-farm employment of rural couples or the wives. Caring the children above 12 years old or the elderly older than 80 years old reduces the possibility of off-farm employment of the husbands. Whether there is preschool education service facility in the village has no effect on the off-farm employment of the couples.
基金the National Natural Science Foundation of China(NSFC)(No.51977019)in part by the Joint Research Fund in Smart Grid under Cooperative Agreement between the National Natural Science Foundation of China(NSFC)(No.U1966208)State Grid Corporation of China(SGCC).
文摘In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more pronounced.This may cause the system to experience small-signal instability during the fault steady-state.In this paper,multi-paralleled doubly fed induction generator(DFIG)-based wind farms(WFs)are taken as an example to study the dynamic coupling within a multi-fed system during fault steady-state of symmetrical low voltage ride-through(LVRT)in a weak grid.The analysis reveals that the dynamic coupling between WFs will introduce a damping shift to each WF.This inevitably affects the system’s dynamic stability and brings the risk of small-signal instability during fault steady-state in LVRT scenarios.Increasing the distance to fault location and fault severity will exacerbate the dynamic coupling between WFs.Because of the dynamic coupling,adjusting the control state of one WF will affect the stability of the remaining WFs in the system.Hence,a cooperative control strategy for multi-paralleled DFIG WFs is proposed to improve dynamic stability during LVRT.The analysis and the effectiveness of the proposed control strategy are verified by modal analysis and simu-lation.