A new method of state recognition based on the theory of evidence was proposed. By this method, the plausible function which the sample awaiting recognition belongs to each category can be obtained through distance fu...A new method of state recognition based on the theory of evidence was proposed. By this method, the plausible function which the sample awaiting recognition belongs to each category can be obtained through distance function. For the marginal samples,two or a batch of evidences can be combined and a new plausible function can be obtained by new evidence. Then the categories of samples can be determined according to plausibility function. This method provides a beder reasoning framework. The result proves the rate of recoghition correctness.展开更多
The pressure signal in the lifting cylinder of the shearer is selected as feature signal, its mean-square deviation is extracted as the feature variable in this paper. The authors put forward a new method of recognizi...The pressure signal in the lifting cylinder of the shearer is selected as feature signal, its mean-square deviation is extracted as the feature variable in this paper. The authors put forward a new method of recognizing the shearer’s cutting state based on pattern recognition. According to this, the completed controI software produced a satisfactory experiment result on the artificial longwall face in the laboratory, Finally the authors look forward to the prospect of the introduction of the artificial neural network theory into this field.展开更多
Using function one direction S-rough sets (function one direction singular rough sets), f-law and F- law and the concept of law distance and the concept of system law collided by F-law are given. Using these concept...Using function one direction S-rough sets (function one direction singular rough sets), f-law and F- law and the concept of law distance and the concept of system law collided by F-law are given. Using these concepts, state characteristic presented by system law collided by F-law and recognition of these states characteristic and recognition criterion and applications are given. Function one direction S-rough sets is one of basic forms of function S-rough sets (function singular rough sets). Function one direction S-rough sets is importance theory and is a method in studying system law collision.展开更多
If a system is not disturbed (or invaded) by some law, there is no doubt that each system will move according to the expected law and keep stable. Although such a fact often appears, some unknown law breaks into the...If a system is not disturbed (or invaded) by some law, there is no doubt that each system will move according to the expected law and keep stable. Although such a fact often appears, some unknown law breaks into the system and leads it into turbulence. Using function one direction S-rough sets, this article gives the concept of the F-generation law in the system, the generation model of the F-generation law and the recognition method of the system law. Function one direction singular rough sets is a new theory and method in recognizing the disturbance law existing in the system and recognizing the system law.展开更多
Using dual function one direction S-rough sets, this article gives the f-law, the F-law, law distance and the concept of system law collided by the F-law. The characteristics presented by the system law collided by th...Using dual function one direction S-rough sets, this article gives the f-law, the F-law, law distance and the concept of system law collided by the F-law. The characteristics presented by the system law collided by the F-law, the recognition of these characteristics and recognition criterion are also proposed. The dual function one direction S-rough sets is one of the basic forms of function S-rough sets. Its basic theory and application in the study of system law collision are reviewed.展开更多
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d...Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.展开更多
The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the s...The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains.展开更多
The thermal-based imaging technique has recently attracted the attention of researchers who are interested in the recognition of human affects dueto its ability to measure the facial transient temperature, which is co...The thermal-based imaging technique has recently attracted the attention of researchers who are interested in the recognition of human affects dueto its ability to measure the facial transient temperature, which is correlated withhuman affects and robustness against illumination changes. Therefore, studieshave increasingly used the thermal imaging as a potential and supplemental solution to overcome the challenges of visual (RGB) imaging, such as the variation oflight conditions and revealing original human affect. Moreover, the thermal-basedimaging has shown promising results in the detection of psychophysiological signals, such as pulse rate and respiration rate in a contactless and noninvasive way.This paper presents a brief review on human affects and focuses on the advantages and challenges of the thermal imaging technique. In addition, this paper discusses the stages of thermal-based human affective state recognition, such asdataset type, preprocessing stage, region of interest (ROI), feature descriptors,and classification approaches with a brief performance analysis based on a number of works in the literature. This analysis could help beginners in the thermalimaging and affective recognition domain to explore numerous approaches usedby researchers to construct an affective state system based on thermal imaging.展开更多
In this paper, the characteristics of vibration signal of machinery in different running conditions are statistically analysed, and some moments of statistical distribution of signals are selected as the eigenvector t...In this paper, the characteristics of vibration signal of machinery in different running conditions are statistically analysed, and some moments of statistical distribution of signals are selected as the eigenvector to condense the state information. Here, we divide the states of machinery into two: 'good' and 'faulty', and the pattern recognition techniques are used to classify the running conditions of machinery. At the end of this paper, the authors present some test data, and from the results obtained, it's verified that the eigenvector selected is reliable and sensible to faults. And the results also show the effectiveness of classification rule.展开更多
Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is pres...Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.展开更多
This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum net...This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum network theory, i.e. for a composite system consisting of two nodes. The covariance correlation tensor is equal to zero for all possible and .展开更多
Athletes have various emotions before competition, and mood states have impact on the competi- tion results. Recognition of athletes’ mood states could help athletes to have better adjustment before competition, whic...Athletes have various emotions before competition, and mood states have impact on the competi- tion results. Recognition of athletes’ mood states could help athletes to have better adjustment before competition, which is significant to competition achievements. In this paper, physiological signals of female rowing athletes in pre- and post-competition were collected. Based on the multi-physiological signals related to pre- and post-competition, such as heart rate and respiration rate, features were extracted which had been subtracted the emotion baseline. Then the particle swarm optimization (PSO) was adopted to optimize the feature selection from the feature set, and combined with the least squares support vector machine (LS-SVM) classifier. Positive mood states and negative mood states were classified by the LS-SVM with PSO feature optimization. The results showed that the classification accuracy by the LS-SVM algorithm combined with PSO and baseline subtraction was better than the condition without baseline subtraction. The combination can contribute to good classification of mood states of rowing athletes, and would be informative to psychological adjustment of athletes.展开更多
This article discusses the covariance correlation tensor (CCT) in quantum network theory for four Bell bases in detail. Furthermore, it gives the expression of the density operator in terms of CCT for a quantum networ...This article discusses the covariance correlation tensor (CCT) in quantum network theory for four Bell bases in detail. Furthermore, it gives the expression of the density operator in terms of CCT for a quantum network of three nodes, thus gives the criterion of entanglement for this case, i.e. the conditions of complete separability and partial separability for a given quantum state of three bodies. Finally it discusses the general case for the quantum network of nodes.展开更多
Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated dev...Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field.展开更多
This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed ...This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed to describe similarity between two ANNs, which are used as HMM state models. Limiting maximum system performance loss, a minimum quantification error aimed hierarchical clustering algorithm is designed to choose the most representative models. The system performance is improved by about 1.5% while saving 40% of the system expense. About 92% of the performance may also be maintained while reducing 70% of system parameters. The suggested method is quite useful for designing pen based interface for various handheld devices.展开更多
Using the limit surface slope as a criterion of wave breaking, a simple model for estimating the spatial fraction of breaking surface of sea at an instant, which is regarded as the whitecap coverge in this paper, is a...Using the limit surface slope as a criterion of wave breaking, a simple model for estimating the spatial fraction of breaking surface of sea at an instant, which is regarded as the whitecap coverge in this paper, is analytically derived from the probability density of surface slope based on Gaussian statistics. The resulting fraction is found depending on the fourth moment of wave spectum, m(4), as well as the critical threshold of surface slope. By expressing the fourth moment in terms of the Neumann spectrum, a formula linking the fraction and wind speed for fully developed sea states is obtianed. Another formula relating the fraction to both wind speed and fetch (or duration) is achieved by expressing m, in terms of the Krylov spectrum and applying the empirical relationships used in the SMB ocean wave predicting technique. A comparison between these results and the field data of whitecap coverage collected by Monahan and O'Muircheartuigh shows an encouraging agreement.展开更多
The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Con...The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Convolutional Block Attention Module (CBAM) has been developed. This algorithm initially employs the latest YOLOv8 for object recognition. Subsequently, the integration of CBAM enhances its feature extraction capabilities. Finally, the WIoU function is used to optimize the network’s bounding box loss, facilitating rapid convergence. Experimental validation using a smoke and fire dataset demonstrated that the proposed algorithm achieved a 2.3% increase in smoke and fire detection accuracy, surpassing other state-of-the-art methods.展开更多
This paper expounds the existent problems in the method and parameter of economic evaluation on construction project, which distributed by the State Planning Commission. By using technical economics principles, the au...This paper expounds the existent problems in the method and parameter of economic evaluation on construction project, which distributed by the State Planning Commission. By using technical economics principles, the author analyzes the problems and finds out the reasonable, simple, practical methods to solve the mutually exclusive schemes problems.展开更多
The concept of F-knowledge is presented by employing S-rough sets. By engrafting and penetrating between the F-knowledge generated by S-rough sets and the RSA algorithm, the security transmission and recognition of mu...The concept of F-knowledge is presented by employing S-rough sets. By engrafting and penetrating between the F-knowledge generated by S-rough sets and the RSA algorithm, the security transmission and recognition of multi-agent F-knowledge are proposed, which includes the security transmission of multi-agent F-knowledge with positive direction secret key and the security transmission of multi-agent F-knowledge with reverse direction secret key. Finally, the recognition criterion and the applications of F-knowledge are presented. The security of F-knowledge is a new application research direction of S-rough sets in information systems.展开更多
In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a...In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.展开更多
文摘A new method of state recognition based on the theory of evidence was proposed. By this method, the plausible function which the sample awaiting recognition belongs to each category can be obtained through distance function. For the marginal samples,two or a batch of evidences can be combined and a new plausible function can be obtained by new evidence. Then the categories of samples can be determined according to plausibility function. This method provides a beder reasoning framework. The result proves the rate of recoghition correctness.
文摘The pressure signal in the lifting cylinder of the shearer is selected as feature signal, its mean-square deviation is extracted as the feature variable in this paper. The authors put forward a new method of recognizing the shearer’s cutting state based on pattern recognition. According to this, the completed controI software produced a satisfactory experiment result on the artificial longwall face in the laboratory, Finally the authors look forward to the prospect of the introduction of the artificial neural network theory into this field.
基金the Natural Science Foundation of Shandong Province of China (Y2004A04)the Natural Science Foundation of Fujian Province of China (Z0511049).
文摘Using function one direction S-rough sets (function one direction singular rough sets), f-law and F- law and the concept of law distance and the concept of system law collided by F-law are given. Using these concepts, state characteristic presented by system law collided by F-law and recognition of these states characteristic and recognition criterion and applications are given. Function one direction S-rough sets is one of basic forms of function S-rough sets (function singular rough sets). Function one direction S-rough sets is importance theory and is a method in studying system law collision.
基金This project was supported by the Ministry of Education of China (206089)Shangdong Provincial Natural Science Foundation of China (Y2004A04)Fujian Provincial Natural Science Foundation of China (Z051049).
文摘If a system is not disturbed (or invaded) by some law, there is no doubt that each system will move according to the expected law and keep stable. Although such a fact often appears, some unknown law breaks into the system and leads it into turbulence. Using function one direction S-rough sets, this article gives the concept of the F-generation law in the system, the generation model of the F-generation law and the recognition method of the system law. Function one direction singular rough sets is a new theory and method in recognizing the disturbance law existing in the system and recognizing the system law.
基金Natural Science Foundation of Shandong Province of China (Y2004A04)Education Hall Foundation of Fujian Education Official of China(JA04268).
文摘Using dual function one direction S-rough sets, this article gives the f-law, the F-law, law distance and the concept of system law collided by the F-law. The characteristics presented by the system law collided by the F-law, the recognition of these characteristics and recognition criterion are also proposed. The dual function one direction S-rough sets is one of the basic forms of function S-rough sets. Its basic theory and application in the study of system law collision are reviewed.
文摘Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.
基金the National Key Research and Development Program of China(No.2020YFB1713500)the Natural Science Basic Research Program of Shaanxi(Grant No.2023JCYB289)+1 种基金the National Natural Science Foundation of China(Grant No.52175112)the Fundamental Research Funds for the Central Universities(Grant No.ZYTS23102).
文摘The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains.
基金funded by the research university grant by Universiti Sains Malaysia[1001.PKOMP.8014001].
文摘The thermal-based imaging technique has recently attracted the attention of researchers who are interested in the recognition of human affects dueto its ability to measure the facial transient temperature, which is correlated withhuman affects and robustness against illumination changes. Therefore, studieshave increasingly used the thermal imaging as a potential and supplemental solution to overcome the challenges of visual (RGB) imaging, such as the variation oflight conditions and revealing original human affect. Moreover, the thermal-basedimaging has shown promising results in the detection of psychophysiological signals, such as pulse rate and respiration rate in a contactless and noninvasive way.This paper presents a brief review on human affects and focuses on the advantages and challenges of the thermal imaging technique. In addition, this paper discusses the stages of thermal-based human affective state recognition, such asdataset type, preprocessing stage, region of interest (ROI), feature descriptors,and classification approaches with a brief performance analysis based on a number of works in the literature. This analysis could help beginners in the thermalimaging and affective recognition domain to explore numerous approaches usedby researchers to construct an affective state system based on thermal imaging.
文摘In this paper, the characteristics of vibration signal of machinery in different running conditions are statistically analysed, and some moments of statistical distribution of signals are selected as the eigenvector to condense the state information. Here, we divide the states of machinery into two: 'good' and 'faulty', and the pattern recognition techniques are used to classify the running conditions of machinery. At the end of this paper, the authors present some test data, and from the results obtained, it's verified that the eigenvector selected is reliable and sensible to faults. And the results also show the effectiveness of classification rule.
文摘Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.
文摘This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum network theory, i.e. for a composite system consisting of two nodes. The covariance correlation tensor is equal to zero for all possible and .
文摘Athletes have various emotions before competition, and mood states have impact on the competi- tion results. Recognition of athletes’ mood states could help athletes to have better adjustment before competition, which is significant to competition achievements. In this paper, physiological signals of female rowing athletes in pre- and post-competition were collected. Based on the multi-physiological signals related to pre- and post-competition, such as heart rate and respiration rate, features were extracted which had been subtracted the emotion baseline. Then the particle swarm optimization (PSO) was adopted to optimize the feature selection from the feature set, and combined with the least squares support vector machine (LS-SVM) classifier. Positive mood states and negative mood states were classified by the LS-SVM with PSO feature optimization. The results showed that the classification accuracy by the LS-SVM algorithm combined with PSO and baseline subtraction was better than the condition without baseline subtraction. The combination can contribute to good classification of mood states of rowing athletes, and would be informative to psychological adjustment of athletes.
文摘This article discusses the covariance correlation tensor (CCT) in quantum network theory for four Bell bases in detail. Furthermore, it gives the expression of the density operator in terms of CCT for a quantum network of three nodes, thus gives the criterion of entanglement for this case, i.e. the conditions of complete separability and partial separability for a given quantum state of three bodies. Finally it discusses the general case for the quantum network of nodes.
基金the Key Research and Development Projects of Sichuan Science and Technology Department under Grant No.2018GZ0464the UESTC-ZHIXIAOJING Joint Research Center of Smart Home under Grant No.H04W210180.
文摘Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field.
文摘This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed to describe similarity between two ANNs, which are used as HMM state models. Limiting maximum system performance loss, a minimum quantification error aimed hierarchical clustering algorithm is designed to choose the most representative models. The system performance is improved by about 1.5% while saving 40% of the system expense. About 92% of the performance may also be maintained while reducing 70% of system parameters. The suggested method is quite useful for designing pen based interface for various handheld devices.
基金This work was financially supported by the National Science Foundation of China(No.49476270,49706067)
文摘Using the limit surface slope as a criterion of wave breaking, a simple model for estimating the spatial fraction of breaking surface of sea at an instant, which is regarded as the whitecap coverge in this paper, is analytically derived from the probability density of surface slope based on Gaussian statistics. The resulting fraction is found depending on the fourth moment of wave spectum, m(4), as well as the critical threshold of surface slope. By expressing the fourth moment in terms of the Neumann spectrum, a formula linking the fraction and wind speed for fully developed sea states is obtianed. Another formula relating the fraction to both wind speed and fetch (or duration) is achieved by expressing m, in terms of the Krylov spectrum and applying the empirical relationships used in the SMB ocean wave predicting technique. A comparison between these results and the field data of whitecap coverage collected by Monahan and O'Muircheartuigh shows an encouraging agreement.
文摘The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Convolutional Block Attention Module (CBAM) has been developed. This algorithm initially employs the latest YOLOv8 for object recognition. Subsequently, the integration of CBAM enhances its feature extraction capabilities. Finally, the WIoU function is used to optimize the network’s bounding box loss, facilitating rapid convergence. Experimental validation using a smoke and fire dataset demonstrated that the proposed algorithm achieved a 2.3% increase in smoke and fire detection accuracy, surpassing other state-of-the-art methods.
文摘This paper expounds the existent problems in the method and parameter of economic evaluation on construction project, which distributed by the State Planning Commission. By using technical economics principles, the author analyzes the problems and finds out the reasonable, simple, practical methods to solve the mutually exclusive schemes problems.
基金supported partly by the Natural Science Foundation of Fujian Province of China(2009J01293)the Natural Science Foundation of Shandong Province of China(Y2007H02).
文摘The concept of F-knowledge is presented by employing S-rough sets. By engrafting and penetrating between the F-knowledge generated by S-rough sets and the RSA algorithm, the security transmission and recognition of multi-agent F-knowledge are proposed, which includes the security transmission of multi-agent F-knowledge with positive direction secret key and the security transmission of multi-agent F-knowledge with reverse direction secret key. Finally, the recognition criterion and the applications of F-knowledge are presented. The security of F-knowledge is a new application research direction of S-rough sets in information systems.
文摘In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.