The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climat...The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climate since the hydrological year(HY) 2003. Daily and flexible multi-day combinations from the HY 2003 to 2014 were produced using Moderate Resolution Imaging Spectroradiometer(MODIS) from Terra and Aqua remote sensing satellites for the snow cover products in the three basins including the Nenjiang River Basin(NJ), Downstream Songhua River Basin(SD) and Upstream Songhua River Basin(SU). Snow cover duration(SCD) was derived from flexible multiday combination each year. The results showed that SCD was significantly associated with elevation, and higher SCD values were found out in the mountainous areas. Further, the average SCDs of NJ, SU and SD basins were 69.43, 98.14 and 88.84 d with an annual growth of 1.36, 2.04 and 2.71 d, respectively. Binary decision tree was used to analyze the nonlinear relationships between SCD and six impact factors, which were successfully applied to simulate the spatial distribution of depth and water equivalent of snow. The impact factors included three topographic factors(elevation, aspect and slope), two climatic factors(precipitation and air temperature) and one vegetation index(Normalized Difference Vegetation Index, NDVI). By treating yearly SCD values as dependent variables and six climatic factors as independent variables, six binary decision trees were built through the combination classification and regression tree(CART) with and without the consideration of climate effect. The results from the model show that elevation, precipitation and air temperature are the three most influential factors, among which air temperature is the most important and ranks first in two of the three studied basins. It is suggested that SCD in the mountainous areas might be more sensitive to climate warming, since precipitation and air temperature are the major factors controlling the persistence of snow cover in the mountainous areas.展开更多
Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting...Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting single instruction multiple date (SIMD) capacity of processors to improve the performance of tree search, and proposes several improvement methods on reported SIMD tree search algorithms. Based on blocking tree structure, blocking for memory alignment and dynamic blocking prefetch are proposed to optimize the overhead of memory access. Furthermore, as a way of non-linear loop unrolling, the search branch unwinding shows that the number of branches can exceed the data width of SIMD instructions in the SIMD search algorithm. The experiments suggest that blocking optimized SIMD tree search algorithm can achieve 1.6 times response speed faster than the un-optimized algorithm.展开更多
We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random var...We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that X_n, Y_n and Z_n are all asymptotically normal as n→∞by applying the contraction method.展开更多
露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模...露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模型建模为混合整数线性规划(Mixed Integer Linear Programming, MILP)模型,表述优化目标和问题约束;其次,考虑到求解MILP模型存在难以满足动态决策实时性的问题,基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)实现多车冲突消解,核心思想是利用搜索树的推演能力进行多车通行前瞻模拟,计算多车的最优通行优先级,动态调整多车的可行驶距离;此外,根据无人矿车在作业区内的作业特征设计不同的MCTS节点价值函数,实现综合考虑运输效率与作业特征的通行优先级排序;最后,设计作业区4,8,12个停车位场景下的多车通行仿真实验,与基于先到先服务(First-Come-FirstServed, FCFS)的方法进行对比,吞吐量提升22.03%~28.00%,平均停车等待时间缩短31.71%~50.79%。同时,搭建微缩智能车辆的6停车位作业区场景实验平台,多车单次运输作业总用时相比FCFS缩短了18.84%。仿真与微缩智能车辆的实验结果表明,本文提出的方法能够提升露天矿作业区多车运输效率。展开更多
The electrical system of CNC machine tool is very complex which involves many uncertain factors and dynamic stochastic characteristics when failure occurs.Therefore,the traditional system reliability analysis method,f...The electrical system of CNC machine tool is very complex which involves many uncertain factors and dynamic stochastic characteristics when failure occurs.Therefore,the traditional system reliability analysis method,fault tree analysis(FTA)method,based on static logic and static failure mechanism is no longer applicable for dynamic systems reliability analysis.Dynamic fault tree(DFT)analysis method can solve this problem effectively.In this method,DFT first should be pretreated to get a simplified fault tree(FT);then the FT was modularized to get the independent static subtrees and dynamic subtrees.Binary decision diagram(BDD)analysis method was used to analyze static subtrees,while an approximation algorithm was used to deal with dynamic subtrees.When the scale of each subtree is smaller than the system scale,the analysis efficiency can be improved significantly.At last,the usefulness of this DFT analysis method was proved by applying it to analyzing the reliability of electrical system.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
CNC machine tool is a large complex system which contains both mechanical and electrical components.As one of these components,the spindle is crucial for the performance of CNC machine tool.To improve the quality of C...CNC machine tool is a large complex system which contains both mechanical and electrical components.As one of these components,the spindle is crucial for the performance of CNC machine tool.To improve the quality of CNC machine,the reliability of spindle was evaluated in this paper using a fault tree analysis(FTA)method.The FTA method is a set of calculation methods based on Boolean algebra.However,it is difficult to analyze a large and complex fault tree with inaccurate results and low efficiency as well as the complexity of time and space.Both of them will result in the so-called "combinatorial explosion".To overcome this problem,the analysis method based on binary decision diagram(BDD)was introduced in our works,and a sorting method about bottom events was also recommended which can reduce the size of the BDD effectively.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41471291,41801283,41070104)Startup Foundation for Doctors of Jilin Jianzhu University(No.861111)13th Five-Year Plan of Technical and Social Research Project for Jilin Colleges(No.JJKH20170257KJ)
文摘The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climate since the hydrological year(HY) 2003. Daily and flexible multi-day combinations from the HY 2003 to 2014 were produced using Moderate Resolution Imaging Spectroradiometer(MODIS) from Terra and Aqua remote sensing satellites for the snow cover products in the three basins including the Nenjiang River Basin(NJ), Downstream Songhua River Basin(SD) and Upstream Songhua River Basin(SU). Snow cover duration(SCD) was derived from flexible multiday combination each year. The results showed that SCD was significantly associated with elevation, and higher SCD values were found out in the mountainous areas. Further, the average SCDs of NJ, SU and SD basins were 69.43, 98.14 and 88.84 d with an annual growth of 1.36, 2.04 and 2.71 d, respectively. Binary decision tree was used to analyze the nonlinear relationships between SCD and six impact factors, which were successfully applied to simulate the spatial distribution of depth and water equivalent of snow. The impact factors included three topographic factors(elevation, aspect and slope), two climatic factors(precipitation and air temperature) and one vegetation index(Normalized Difference Vegetation Index, NDVI). By treating yearly SCD values as dependent variables and six climatic factors as independent variables, six binary decision trees were built through the combination classification and regression tree(CART) with and without the consideration of climate effect. The results from the model show that elevation, precipitation and air temperature are the three most influential factors, among which air temperature is the most important and ranks first in two of the three studied basins. It is suggested that SCD in the mountainous areas might be more sensitive to climate warming, since precipitation and air temperature are the major factors controlling the persistence of snow cover in the mountainous areas.
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.J50103)the Graduate Student Innovation Foundation of Shanghai University(Grant No.SHUCX112167)
文摘Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting single instruction multiple date (SIMD) capacity of processors to improve the performance of tree search, and proposes several improvement methods on reported SIMD tree search algorithms. Based on blocking tree structure, blocking for memory alignment and dynamic blocking prefetch are proposed to optimize the overhead of memory access. Furthermore, as a way of non-linear loop unrolling, the search branch unwinding shows that the number of branches can exceed the data width of SIMD instructions in the SIMD search algorithm. The experiments suggest that blocking optimized SIMD tree search algorithm can achieve 1.6 times response speed faster than the un-optimized algorithm.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10671188)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX3-SYW-S02)the Special Foundation of University of Science and Technology of China
文摘We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that X_n, Y_n and Z_n are all asymptotically normal as n→∞by applying the contraction method.
文摘露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模型建模为混合整数线性规划(Mixed Integer Linear Programming, MILP)模型,表述优化目标和问题约束;其次,考虑到求解MILP模型存在难以满足动态决策实时性的问题,基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)实现多车冲突消解,核心思想是利用搜索树的推演能力进行多车通行前瞻模拟,计算多车的最优通行优先级,动态调整多车的可行驶距离;此外,根据无人矿车在作业区内的作业特征设计不同的MCTS节点价值函数,实现综合考虑运输效率与作业特征的通行优先级排序;最后,设计作业区4,8,12个停车位场景下的多车通行仿真实验,与基于先到先服务(First-Come-FirstServed, FCFS)的方法进行对比,吞吐量提升22.03%~28.00%,平均停车等待时间缩短31.71%~50.79%。同时,搭建微缩智能车辆的6停车位作业区场景实验平台,多车单次运输作业总用时相比FCFS缩短了18.84%。仿真与微缩智能车辆的实验结果表明,本文提出的方法能够提升露天矿作业区多车运输效率。
文摘The electrical system of CNC machine tool is very complex which involves many uncertain factors and dynamic stochastic characteristics when failure occurs.Therefore,the traditional system reliability analysis method,fault tree analysis(FTA)method,based on static logic and static failure mechanism is no longer applicable for dynamic systems reliability analysis.Dynamic fault tree(DFT)analysis method can solve this problem effectively.In this method,DFT first should be pretreated to get a simplified fault tree(FT);then the FT was modularized to get the independent static subtrees and dynamic subtrees.Binary decision diagram(BDD)analysis method was used to analyze static subtrees,while an approximation algorithm was used to deal with dynamic subtrees.When the scale of each subtree is smaller than the system scale,the analysis efficiency can be improved significantly.At last,the usefulness of this DFT analysis method was proved by applying it to analyzing the reliability of electrical system.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
基金National Science and Technology Major Project of China(No.2013ZX04013-011)
文摘CNC machine tool is a large complex system which contains both mechanical and electrical components.As one of these components,the spindle is crucial for the performance of CNC machine tool.To improve the quality of CNC machine,the reliability of spindle was evaluated in this paper using a fault tree analysis(FTA)method.The FTA method is a set of calculation methods based on Boolean algebra.However,it is difficult to analyze a large and complex fault tree with inaccurate results and low efficiency as well as the complexity of time and space.Both of them will result in the so-called "combinatorial explosion".To overcome this problem,the analysis method based on binary decision diagram(BDD)was introduced in our works,and a sorting method about bottom events was also recommended which can reduce the size of the BDD effectively.