In order to assess the effects of chemical properties of soil salinity on electrical conductivity of 1:5 soil/water extract (EC1:5), the study focused on revealing the main chemical factors contributing to EC of s...In order to assess the effects of chemical properties of soil salinity on electrical conductivity of 1:5 soil/water extract (EC1:5), the study focused on revealing the main chemical factors contributing to EC of soil extracts and their relative importance. The relationship between EC1:5 and the chemical properties of soil salinity in the delta oasis of Weigan and Kuqa rivers, China, were studied using path coefficient analysis, a path analysis method. We studied each key element affecting EC1:5 either directly or indirectly. The results obtained show that the salt content, total dissolved solids (TDS), and the sum of the sodium ion concentration and the kalium ion concentration are the most influential factors on 1:5 soil/ water extract (EC1:5) in the 0-10 cm and the 30-50 cm soil layer. The results show that the sequence of direct path coefficients in the 0-10 cm and the 30-50 cm soil layers on soil conductivity is TDS→Na^+ + K^+→Salt content→Ca^2+→Cl-→the sodium dianion ratio (SDR)→pH→ SO4^2-→HCO3^-→Mg^2+→the soluble sodium percentage (SSP) sodium absorption ratio (SAR) and TDS→Salt content→Na^+ + K^+→Ca^2+→SDR→Mg^2+→HCO3^-→SSP→pH→SO4^2-→SAR→Cl^-. The salt content, chlorine ion, and SAR are the main factors affecting 1:5 soil/water extract (EC1:5) in the 10-30 centimeter soil layer. The order of direct path coefficients result is as follows: Salt content→Cl^-→SAR→SSP→TDS→Ca^2+→Mg^2+= SO4^2-→HCO3^-→pH→SDR→Na^- + K^+. Moreover, the effects of HCO3^-, pH were very weak. Though the direct path coefficients between EC1:5 and SAR, SO4^2- and Ca^2+ were not high, influence of other chemical factors caused the coefficients to increase, making the summation of their direct and indirect path coefficients relatively high. The models of the different soil layers were structured separately. Evidences showed that multiple regression relations between EC1:5 and most of the primary factors had sound reliability and very good accuracy. The research results can serve as a reference to the scientific management amelioration and utilization of saline in the Delta Oasis of Weigan and Kuqa rivers.展开更多
Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In...Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In this paper, the author conducted a case study of the delta oasis of Weigan and Kuqa rivers, which is a typical saline area in the Tarim River Watershed. The current study was based on the TM/ETM+ images of 1989, 2001, and 2006, and supported by Geographic Information System (GIS) spatial analysis, vegetation index, and dimidiate pixel model. In addition, VBSl (vegetation, bare soil and shadow indices) suitable for TM/ETM+ irrlages, constructed with FCD (forest canopy density) model principle and put forward by ITTO (International Tropical Timber Organization), was used, and it was applied to estimate the VFC. The estimation accuracy was later prow^n to be up to 83.52%. Further, the study analyzed and appraised the changes in vegetation patterns and revealed a pattern of spatial change in the vegetation coverage of the study area by producing the map of VFC levels in the delta oasis. Forest, grassland, and farmland were the three main land-use types with high and extremely-high coverage, and they played an important role in maintaining the vegetation. The forest area determined the changes of the coverage area, whereas the other two land types affected the directions of change. Therefore, planting trees, protecting grasslands, reclaiming farmlands, and controlling unused lands should be included in a long-term program because of their importance in keeping regional vegetation coverage. Finally, the dynamic variation of VFC in the study area was evaluated according to the quantity and spatial distribution rendered by plant cover diigital images to deeply analyze the reason behind the variation.展开更多
盐生植物对于维持干旱区绿洲生态系统平衡起着核心作用。该文以渭干河-库车河三角洲绿洲盐漠带典型盐生植物为研究对象,利用Field Spec Pro FR便携式地物波谱仪,对2010年10月盐生植物的野外光谱数据进行采集并取相应土样。首先,采用光...盐生植物对于维持干旱区绿洲生态系统平衡起着核心作用。该文以渭干河-库车河三角洲绿洲盐漠带典型盐生植物为研究对象,利用Field Spec Pro FR便携式地物波谱仪,对2010年10月盐生植物的野外光谱数据进行采集并取相应土样。首先,采用光谱学分析方法分析光谱特征变化,并对土壤理化特性(含盐量、TDS、电导率、pH值)进行室内测定分析,获得盐生植物光谱特征数据和土壤理化特性数据。其次,利用实测光谱数据对盐生植物高光谱植被指数NDVI705、VOG1、ARI1和CRI1进行反演,用高光谱影像和TM影像分别对VOG1和NDVI705进行反演,并与土壤理化特性进行相关性分析。研究表明:高光谱植被指数NDVI705、VOG1、ARI1与土壤理化特性之间相关性均较低(0.266<R<0.449),但CRI1与含盐量、TDS的相关性较高(R=0.668);用高光谱影像反演的VOG1与电导率的相关性较高(R=0.536),用TM影像反演的NDVI705与TDS相关性较高(R=0.695)。通过精度验证,发现高光谱反演数据(VOG1)比TM反演数据(NDVI705)精确,说明遥感数据空间分辨率的不同影响了反演植被光谱指数的精度。该研究不仅可为干旱地区盐生植物的遥感识别奠定基础,而且对维持绿洲生态系统稳定提供一定的科学依据。展开更多
基金supported by the National Natural Science Foundation of China(40861020)the Natural Science Foundation of Xinjiang(200821128)+1 种基金the Key Laboratory of Oasis Ecology in Xinjiang University(XJDX0201-2008-03)the Fund of Young Teachers Scientific Research in Xinjiang University(QN070122),China
文摘In order to assess the effects of chemical properties of soil salinity on electrical conductivity of 1:5 soil/water extract (EC1:5), the study focused on revealing the main chemical factors contributing to EC of soil extracts and their relative importance. The relationship between EC1:5 and the chemical properties of soil salinity in the delta oasis of Weigan and Kuqa rivers, China, were studied using path coefficient analysis, a path analysis method. We studied each key element affecting EC1:5 either directly or indirectly. The results obtained show that the salt content, total dissolved solids (TDS), and the sum of the sodium ion concentration and the kalium ion concentration are the most influential factors on 1:5 soil/ water extract (EC1:5) in the 0-10 cm and the 30-50 cm soil layer. The results show that the sequence of direct path coefficients in the 0-10 cm and the 30-50 cm soil layers on soil conductivity is TDS→Na^+ + K^+→Salt content→Ca^2+→Cl-→the sodium dianion ratio (SDR)→pH→ SO4^2-→HCO3^-→Mg^2+→the soluble sodium percentage (SSP) sodium absorption ratio (SAR) and TDS→Salt content→Na^+ + K^+→Ca^2+→SDR→Mg^2+→HCO3^-→SSP→pH→SO4^2-→SAR→Cl^-. The salt content, chlorine ion, and SAR are the main factors affecting 1:5 soil/water extract (EC1:5) in the 10-30 centimeter soil layer. The order of direct path coefficients result is as follows: Salt content→Cl^-→SAR→SSP→TDS→Ca^2+→Mg^2+= SO4^2-→HCO3^-→pH→SDR→Na^- + K^+. Moreover, the effects of HCO3^-, pH were very weak. Though the direct path coefficients between EC1:5 and SAR, SO4^2- and Ca^2+ were not high, influence of other chemical factors caused the coefficients to increase, making the summation of their direct and indirect path coefficients relatively high. The models of the different soil layers were structured separately. Evidences showed that multiple regression relations between EC1:5 and most of the primary factors had sound reliability and very good accuracy. The research results can serve as a reference to the scientific management amelioration and utilization of saline in the Delta Oasis of Weigan and Kuqa rivers.
基金supported by the National Basic Research Program of China (2009CB421302)the Joint Fundsof the National Natural Science Foundation of China(U1138303)+4 种基金the National Natural Science Foundation of China(41261090,41161063)the Open Foundation of State Key Laboratory of Resources and Environment Information Systems (2010KF0003SA)Scientific Research Foundation for Doctor (BS110125)Xinjiang Natural Science Foundation for Young Scholars (2012211B04)Research Fund for Training Young Teachers (XJEDU2012S03)
文摘Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In this paper, the author conducted a case study of the delta oasis of Weigan and Kuqa rivers, which is a typical saline area in the Tarim River Watershed. The current study was based on the TM/ETM+ images of 1989, 2001, and 2006, and supported by Geographic Information System (GIS) spatial analysis, vegetation index, and dimidiate pixel model. In addition, VBSl (vegetation, bare soil and shadow indices) suitable for TM/ETM+ irrlages, constructed with FCD (forest canopy density) model principle and put forward by ITTO (International Tropical Timber Organization), was used, and it was applied to estimate the VFC. The estimation accuracy was later prow^n to be up to 83.52%. Further, the study analyzed and appraised the changes in vegetation patterns and revealed a pattern of spatial change in the vegetation coverage of the study area by producing the map of VFC levels in the delta oasis. Forest, grassland, and farmland were the three main land-use types with high and extremely-high coverage, and they played an important role in maintaining the vegetation. The forest area determined the changes of the coverage area, whereas the other two land types affected the directions of change. Therefore, planting trees, protecting grasslands, reclaiming farmlands, and controlling unused lands should be included in a long-term program because of their importance in keeping regional vegetation coverage. Finally, the dynamic variation of VFC in the study area was evaluated according to the quantity and spatial distribution rendered by plant cover diigital images to deeply analyze the reason behind the variation.
文摘盐生植物对于维持干旱区绿洲生态系统平衡起着核心作用。该文以渭干河-库车河三角洲绿洲盐漠带典型盐生植物为研究对象,利用Field Spec Pro FR便携式地物波谱仪,对2010年10月盐生植物的野外光谱数据进行采集并取相应土样。首先,采用光谱学分析方法分析光谱特征变化,并对土壤理化特性(含盐量、TDS、电导率、pH值)进行室内测定分析,获得盐生植物光谱特征数据和土壤理化特性数据。其次,利用实测光谱数据对盐生植物高光谱植被指数NDVI705、VOG1、ARI1和CRI1进行反演,用高光谱影像和TM影像分别对VOG1和NDVI705进行反演,并与土壤理化特性进行相关性分析。研究表明:高光谱植被指数NDVI705、VOG1、ARI1与土壤理化特性之间相关性均较低(0.266<R<0.449),但CRI1与含盐量、TDS的相关性较高(R=0.668);用高光谱影像反演的VOG1与电导率的相关性较高(R=0.536),用TM影像反演的NDVI705与TDS相关性较高(R=0.695)。通过精度验证,发现高光谱反演数据(VOG1)比TM反演数据(NDVI705)精确,说明遥感数据空间分辨率的不同影响了反演植被光谱指数的精度。该研究不仅可为干旱地区盐生植物的遥感识别奠定基础,而且对维持绿洲生态系统稳定提供一定的科学依据。