Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoust...Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoustic emission(AE)characteristics and mechanical parameters of granodiorite and granite after heating and water cooling by uniaxial compression and variable-angle shear tests under different temperature gradients.We identify their changes in mesostructure and mineral composition with electron probe microanalysis and scanning electron microscopy.Results show that these two hot dry rocks have similar diagenetic minerals and microstructure,but show significantly different mechanical and acoustic characteristics,and even opposing evolution trends in a certain temperature range.At the temperatures ranging from 100℃to 500℃,the compressive and shear mechanical properties of granodiorite switch repeatedly between weakening and strengthening,and those of granite show a continuous weakening trend.At 600℃,both rocks exhibit a deterioration of mechanical properties.The damage mode of granite is characterized by initiating at low stress,exponential evolutionary activity,and intensified energy release.In contrast,granodiorite exhibits the characteristics of initiating at high stress,volatile evolutionary activity,and intermittent energy release,due to its more stable microstructure and fewer thermal defects compared to granite.As the temperature increases,the initiation and propagation of secondary cracks in granodiorite are suppressed to a certain extent,and the seismicity and brittleness are enhanced.The subtle differences in grain size,microscopic heterogeneity,and mineral composition of the two hot dry rocks determine the different acoustic-mechanical characteristics under heating and cooling,and the evolution trends with temperature.These findings are of great significance for the scientific and efficient construction of rock mass engineering by rationally utilizing different rock strata properties.展开更多
3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properti...3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.展开更多
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur...Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone.展开更多
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa...During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.展开更多
The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock durin...The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function.展开更多
Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of wast...Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of ex- periments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The minera- logical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.展开更多
Crushed rock subgrade, as one of the roadbed-cooling methods, has been widely used in the Qinghai-Tibet Railway. Much attention has been paid on the cooling effect of crushed rock; however, the mechanical properties o...Crushed rock subgrade, as one of the roadbed-cooling methods, has been widely used in the Qinghai-Tibet Railway. Much attention has been paid on the cooling effect of crushed rock; however, the mechanical properties of crushed rock are somehow neglected. Based on the discrete element method, biaxial compression test condition for crushed rock is com- piled in FISH language in PFC2D, and the natural shape of crushed rock is simulated with super particle "cluster". The ef- fect of particle size, crushed rock strength and confining pressure level on overall mechanical properties of the crushed rock aggregate are respectively analyzed. Results show that crushed rock of large particle size plays an essential frame- work role, which is mainly responsible for the deformation of crushed rock aggregate. The strength of gravel has a great influence on overall mechanical properties which means that strength attenuation caused by the freeze thaw cycles cannot be ignored. The stress-strain curves can be divided into two stages including shear contraction and shear expansion at different confining pressures.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
The available measurements of the geo-mechanical properties of rocks in Southern Ontario and the neighbouring regions (New York, Ohio, Michigan, Indiana, Illinois, Wisconsin, and Minnesota) are summarized and presente...The available measurements of the geo-mechanical properties of rocks in Southern Ontario and the neighbouring regions (New York, Ohio, Michigan, Indiana, Illinois, Wisconsin, and Minnesota) are summarized and presented. These measurements were compiled from available published data in the relevant literature and also from data that were collected from major underground projects in these regions. The compiled data are presented in three categories: measured in-situ stresses in different rock formations;calculated strength, stiffness and deformation including time-dependent deformation properties;and the measured dynamic properties of intact rock specimens from different rock formations in Southern Ontario and the neighbouring regions. The data presented in this paper can be used as a resource for preliminary evaluation of the geomechanical properties of the rocks in these regions. The presented geo-mechanical properties were generally obtained from in-situ measurements and from laboratory tests that were conducted on intact rock specimens from freshly excavated rock samples. Moreover, the time-dependent deformation properties of rocks in these regions were obtained from laboratory tests that were performed on intact rock specimens submerged in water. However, the influence of drilling fluids such as bentonite slurry and synthetic polymers solution, on the geo-mechanical properties of rocks is not evident and needs to be investigated.展开更多
The structural characteristics and mechanical properties of the rock mass are important parts of the feasibility study on the nuclear power engineering field. In this study, by means of in situ investigation and stati...The structural characteristics and mechanical properties of the rock mass are important parts of the feasibility study on the nuclear power engineering field. In this study, by means of in situ investigation and statistics, the structural plane and joint fissure features of the rock mass were analyzed and discussed at different plots and different depth scopes in the Tianwan Nuclear Power engineering field, the rock mass integrality and its weathered degree were evaluated respectively, and especially, the unfavorable geological phenomena of strongly-weathered cystid existing in the field were studied. According to the results of indoor rock mechanical tests, in combination with drilling, the shallow seismic prospecting, sonic logging and point load tests, the statistical results of physical and mechanical indices of rocks at key plots of the field were analyzed, and the design parameters of the field were calculated. It provided scientific basis for the foundation design of the nuclear power plant.展开更多
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti...To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.展开更多
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_...It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation.展开更多
Based on a great number of experimental data on various mechanical properties of rock in the literature,six empirical equations between the characteristic impedance(product of density and P-wave velocity)and mechanica...Based on a great number of experimental data on various mechanical properties of rock in the literature,six empirical equations between the characteristic impedance(product of density and P-wave velocity)and mechanical properties of rock are proposed.These properties include uniaxial compressive strength,tensile strength,shear strength,mode I fracture toughness,Young’s modulus,and Poisson’s ratio.These empirical equations show that the values of the aforementioned properties increase with increase in characteristic impedance.It also implies that the characteristic impedance of rock may be considered as an index to represent the main properties of rock.In this sense,it is possible to consider using characteristic impedance to classify rock masses for studies in the future.展开更多
The influence of rock mechanical properties on the electromagnetic radiation(EMR)mechanism of rock fracturing is an important research topic in solid mechanics and earthquake prediction.In this study,an EMR model of r...The influence of rock mechanical properties on the electromagnetic radiation(EMR)mechanism of rock fracturing is an important research topic in solid mechanics and earthquake prediction.In this study,an EMR model of rock fracturing considering the fracture factor,elastic modulus,Poisson’s ratio,radiation distance and crack length is derived based on the Hertz oscillator array assumption.An experimental system,including an electromagnetic shielding module,an EMR signal induction and transmission module,a signal recording module and a loading module,is developed to understand the EMR characteristics of four different rocks.The validity of the EMR theoretical model is verified and the relationships between the rock cracking morphology and the EMR waveform,amplitude and frequency are revealed.It is found that rock mechanical properties have obvious influences on the EMR waveform,amplitude and frequency during rock fracturing.This study provides a better understanding on the EMR mechanism of rock fracturing and can help to improve the accuracy of rock disaster prediction based on EMR.展开更多
Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based o...Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based on the combination of discrete fracture network(DFN)and finite-discrete element method(FDEM)is applied to characterizing the amygdaloidal basalt,and to systematically exploring the effects of the development characteristics of amygdales and sample sizes on the mechanical properties of basalt.The results show that with increasing amygdale content,the elastic modulus(E)increases linearly,while the uniaxial compressive strength(UCS)shows an exponential or logarithmic decay.When the orientation of amygdales is between 0°and 90°,basalt shows a relatively pronounced strength and stiffness anisotropy.Based on the analysis of the geometric and mechanical properties,the representative element volume(REV)size of amygdaloidal basalt blocks is determined to be 200 mm,and the mechanical properties obtained on this scale can be regarded as the properties of the equivalent continuum.The results of this research are of value to the understanding of the mechanical properties of amygdaloidal basalt,so as to guide the formulation of engineering design schemes more accurately.展开更多
Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock...Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.展开更多
A new method to test rock abrasiveness is proposed based upon the dependence of rock abrasiveness on their structural and physico-mechanical properties. The article describes the procedure of presentation of propertie...A new method to test rock abrasiveness is proposed based upon the dependence of rock abrasiveness on their structural and physico-mechanical properties. The article describes the procedure of presentation of properties that govern rock abrasiveness on a canonical scale by dimensionless components, and the integrated estimation of the properties by a generalized index. The obtained results are compared with the known classifications of rock abrasiveness.展开更多
Transparent physical models of real rocks fabricated using three-dimensional(3D)printing technology are used in photoelas-tic experiments to quantify the evolution of the internal stress and deformation fields of rock...Transparent physical models of real rocks fabricated using three-dimensional(3D)printing technology are used in photoelas-tic experiments to quantify the evolution of the internal stress and deformation fields of rocks.Therefore,they are rendered as an emerging powerful technique to quantitatively reveal the intrinsic mechanisms of rock failure.The mechanical behav-ior of natural rocks exhibits a significant size effect;however,limited research has been conducted on whether transparent physical models observe similar size effects.In this study,to make the transparent printed models accurately demonstrate the mechanical behavior of natural rocks and reveal the internal mechanism of the size effect in rock mechanical behavior,the size effect in 3D printed models of fractured and porous rocks under uniaxial compressive loading was investigated.Transparent cylindrical models with different sizes that contained different fractured and porous structures were printed using the fracture and porous characteristics extracted from natural coal and sandstone.The variation in uniaxial compres-sive strength and elastic modulus of fractured and porous models for increasing model sizes were obtained through uniaxial compression experiments.Finally,the influence of internal discontinuous structural features,such as fractures and pores,on the size effect pertaining to the mechanical behavior of the model was analyzed and elaborated by comparing it with the mechanical properties of the continuous homogeneous model without fractures and pores.The findings provided support and reference to analyze the size effect of rock mechanical behavior and the effect of the internal discontinuous structure using 3D printed transparent models.展开更多
基金The authors would like to acknowledge the financial support from the National Natural Science Foundation of China(Grant No.52104112)the Research Foundation of the Department of Natural Resources of Hunan Province,China(Grant No.20230101DZ)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ20062).
文摘Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoustic emission(AE)characteristics and mechanical parameters of granodiorite and granite after heating and water cooling by uniaxial compression and variable-angle shear tests under different temperature gradients.We identify their changes in mesostructure and mineral composition with electron probe microanalysis and scanning electron microscopy.Results show that these two hot dry rocks have similar diagenetic minerals and microstructure,but show significantly different mechanical and acoustic characteristics,and even opposing evolution trends in a certain temperature range.At the temperatures ranging from 100℃to 500℃,the compressive and shear mechanical properties of granodiorite switch repeatedly between weakening and strengthening,and those of granite show a continuous weakening trend.At 600℃,both rocks exhibit a deterioration of mechanical properties.The damage mode of granite is characterized by initiating at low stress,exponential evolutionary activity,and intensified energy release.In contrast,granodiorite exhibits the characteristics of initiating at high stress,volatile evolutionary activity,and intermittent energy release,due to its more stable microstructure and fewer thermal defects compared to granite.As the temperature increases,the initiation and propagation of secondary cracks in granodiorite are suppressed to a certain extent,and the seismicity and brittleness are enhanced.The subtle differences in grain size,microscopic heterogeneity,and mineral composition of the two hot dry rocks determine the different acoustic-mechanical characteristics under heating and cooling,and the evolution trends with temperature.These findings are of great significance for the scientific and efficient construction of rock mass engineering by rationally utilizing different rock strata properties.
基金the National Natural Science Foundation of China(Nos.51988101 and 42007262).
文摘3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20234 and 42277170)Hubei Province Key Research and Development Project(Grant No.2023BCB121).
文摘Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone.
基金National Natural Science Foundation of China(Grant Nos.52174080 and 51974160)Science Foundation of Tiandi Technology Co.,Ltd.(2022-2-TD-ZD016).
文摘During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
基金supported by the National Science Fund for Excellent Young researchers of Science China(52122404)the National Natural Science Foundation of China(41977238).
文摘The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function.
基金financially supported by the National Natural Science Foundation of China (Nos.50934002 and 51104011)the Program for Changjiang Scholars and Innovative Research Team in Universities (IRT0950)China Postdoctoral Science Foundation(No.20100480200)
文摘Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of ex- periments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The minera- logical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.
基金supported by National 973 Project of China (No. 2012CB026104)National Natural Science Foundation of China (Nos. 41171064, 41371081)the Fundamental Research Funds for the Central Universities (No. 2011JBZ009)
文摘Crushed rock subgrade, as one of the roadbed-cooling methods, has been widely used in the Qinghai-Tibet Railway. Much attention has been paid on the cooling effect of crushed rock; however, the mechanical properties of crushed rock are somehow neglected. Based on the discrete element method, biaxial compression test condition for crushed rock is com- piled in FISH language in PFC2D, and the natural shape of crushed rock is simulated with super particle "cluster". The ef- fect of particle size, crushed rock strength and confining pressure level on overall mechanical properties of the crushed rock aggregate are respectively analyzed. Results show that crushed rock of large particle size plays an essential frame- work role, which is mainly responsible for the deformation of crushed rock aggregate. The strength of gravel has a great influence on overall mechanical properties which means that strength attenuation caused by the freeze thaw cycles cannot be ignored. The stress-strain curves can be divided into two stages including shear contraction and shear expansion at different confining pressures.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
文摘The available measurements of the geo-mechanical properties of rocks in Southern Ontario and the neighbouring regions (New York, Ohio, Michigan, Indiana, Illinois, Wisconsin, and Minnesota) are summarized and presented. These measurements were compiled from available published data in the relevant literature and also from data that were collected from major underground projects in these regions. The compiled data are presented in three categories: measured in-situ stresses in different rock formations;calculated strength, stiffness and deformation including time-dependent deformation properties;and the measured dynamic properties of intact rock specimens from different rock formations in Southern Ontario and the neighbouring regions. The data presented in this paper can be used as a resource for preliminary evaluation of the geomechanical properties of the rocks in these regions. The presented geo-mechanical properties were generally obtained from in-situ measurements and from laboratory tests that were conducted on intact rock specimens from freshly excavated rock samples. Moreover, the time-dependent deformation properties of rocks in these regions were obtained from laboratory tests that were performed on intact rock specimens submerged in water. However, the influence of drilling fluids such as bentonite slurry and synthetic polymers solution, on the geo-mechanical properties of rocks is not evident and needs to be investigated.
文摘The structural characteristics and mechanical properties of the rock mass are important parts of the feasibility study on the nuclear power engineering field. In this study, by means of in situ investigation and statistics, the structural plane and joint fissure features of the rock mass were analyzed and discussed at different plots and different depth scopes in the Tianwan Nuclear Power engineering field, the rock mass integrality and its weathered degree were evaluated respectively, and especially, the unfavorable geological phenomena of strongly-weathered cystid existing in the field were studied. According to the results of indoor rock mechanical tests, in combination with drilling, the shallow seismic prospecting, sonic logging and point load tests, the statistical results of physical and mechanical indices of rocks at key plots of the field were analyzed, and the design parameters of the field were calculated. It provided scientific basis for the foundation design of the nuclear power plant.
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
基金the Fundamental Research Funds for the Central Universities(Project No.2022CDJKYJH037)the National Key R&D Program of China(Grant No.2021YFB3901402)。
文摘To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
基金This research was supported by the National Natural Science Foundation of China(No.52104209)the Postdoctoral Research Foundation of China(No.2021M692192)+1 种基金the National Natural Science Foundation of China(Nos.51827901 and 52174082)the Program for Guangdong Introducing Innovative and Entrepre-neurial Teams(No.2019ZT08G315).
文摘It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation.
基金support from China Scholarship Council(CSC)(Grant No.201706430058)。
文摘Based on a great number of experimental data on various mechanical properties of rock in the literature,six empirical equations between the characteristic impedance(product of density and P-wave velocity)and mechanical properties of rock are proposed.These properties include uniaxial compressive strength,tensile strength,shear strength,mode I fracture toughness,Young’s modulus,and Poisson’s ratio.These empirical equations show that the values of the aforementioned properties increase with increase in characteristic impedance.It also implies that the characteristic impedance of rock may be considered as an index to represent the main properties of rock.In this sense,it is possible to consider using characteristic impedance to classify rock masses for studies in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.51979146 and 11272178)。
文摘The influence of rock mechanical properties on the electromagnetic radiation(EMR)mechanism of rock fracturing is an important research topic in solid mechanics and earthquake prediction.In this study,an EMR model of rock fracturing considering the fracture factor,elastic modulus,Poisson’s ratio,radiation distance and crack length is derived based on the Hertz oscillator array assumption.An experimental system,including an electromagnetic shielding module,an EMR signal induction and transmission module,a signal recording module and a loading module,is developed to understand the EMR characteristics of four different rocks.The validity of the EMR theoretical model is verified and the relationships between the rock cracking morphology and the EMR waveform,amplitude and frequency are revealed.It is found that rock mechanical properties have obvious influences on the EMR waveform,amplitude and frequency during rock fracturing.This study provides a better understanding on the EMR mechanism of rock fracturing and can help to improve the accuracy of rock disaster prediction based on EMR.
基金the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the Key Program of National Natural Science Foundation of China(Grant No.41931286)the China Postdoctoral Science Foundation(Grant No.2021M691147)。
文摘Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based on the combination of discrete fracture network(DFN)and finite-discrete element method(FDEM)is applied to characterizing the amygdaloidal basalt,and to systematically exploring the effects of the development characteristics of amygdales and sample sizes on the mechanical properties of basalt.The results show that with increasing amygdale content,the elastic modulus(E)increases linearly,while the uniaxial compressive strength(UCS)shows an exponential or logarithmic decay.When the orientation of amygdales is between 0°and 90°,basalt shows a relatively pronounced strength and stiffness anisotropy.Based on the analysis of the geometric and mechanical properties,the representative element volume(REV)size of amygdaloidal basalt blocks is determined to be 200 mm,and the mechanical properties obtained on this scale can be regarded as the properties of the equivalent continuum.The results of this research are of value to the understanding of the mechanical properties of amygdaloidal basalt,so as to guide the formulation of engineering design schemes more accurately.
基金Project(2014QNB31)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51674248)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.
文摘A new method to test rock abrasiveness is proposed based upon the dependence of rock abrasiveness on their structural and physico-mechanical properties. The article describes the procedure of presentation of properties that govern rock abrasiveness on a canonical scale by dimensionless components, and the integrated estimation of the properties by a generalized index. The obtained results are compared with the known classifications of rock abrasiveness.
基金the National Natural Science Foundation of China(51727807,52121003)Innovation Teams of Ten-Thousand Talents Program sponsored by the Ministry of Science and Technology of China(2016RA4067).
文摘Transparent physical models of real rocks fabricated using three-dimensional(3D)printing technology are used in photoelas-tic experiments to quantify the evolution of the internal stress and deformation fields of rocks.Therefore,they are rendered as an emerging powerful technique to quantitatively reveal the intrinsic mechanisms of rock failure.The mechanical behav-ior of natural rocks exhibits a significant size effect;however,limited research has been conducted on whether transparent physical models observe similar size effects.In this study,to make the transparent printed models accurately demonstrate the mechanical behavior of natural rocks and reveal the internal mechanism of the size effect in rock mechanical behavior,the size effect in 3D printed models of fractured and porous rocks under uniaxial compressive loading was investigated.Transparent cylindrical models with different sizes that contained different fractured and porous structures were printed using the fracture and porous characteristics extracted from natural coal and sandstone.The variation in uniaxial compres-sive strength and elastic modulus of fractured and porous models for increasing model sizes were obtained through uniaxial compression experiments.Finally,the influence of internal discontinuous structural features,such as fractures and pores,on the size effect pertaining to the mechanical behavior of the model was analyzed and elaborated by comparing it with the mechanical properties of the continuous homogeneous model without fractures and pores.The findings provided support and reference to analyze the size effect of rock mechanical behavior and the effect of the internal discontinuous structure using 3D printed transparent models.