The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whiteno...The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer.展开更多
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi...A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.展开更多
Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic mo...Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ...We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.展开更多
In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on pe...In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate.展开更多
The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with tim...The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns.展开更多
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i...Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment.展开更多
In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwi...In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.展开更多
In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochast...In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochastic system by computing the Lyapunov exponent of the linearized system. Further, the global stability of the stochastic model is analyzed based on the singular boundary theory. Moreover, we prove that the model undergoes a Hopf bifurcation and a pitchfork bifurcation. Finally, several numerical examples are provided to illustrate the theoretical results. .展开更多
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of severa...Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.展开更多
The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system ...The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system.展开更多
At any given time, a product stock manager is expected to carry out activities to check his or her holdings in general and to monitor the condition of the stock in particular. He should monitor the level or quantity a...At any given time, a product stock manager is expected to carry out activities to check his or her holdings in general and to monitor the condition of the stock in particular. He should monitor the level or quantity available of a given product, of any item. On the basis of the observation made in relation to the movements of previous periods, he may decide to order or not a certain quantity of products. This paper discusses the applicability of discrete-time Markov chains in making relevant decisions for the management of a stock of COTRA-Honey products. A Markov chain model based on the transition matrix and equilibrium probabilities was developed to help managers predict the likely state of the stock in order to anticipate procurement decisions in the short, medium or long term. The objective of any manager is to ensure efficient management by limiting overstocking, minimising the risk of stock-outs as much as possible and maximising profits. The determined Markov chain model allows the manager to predict whether or not to order for the period following the current period, and if so, how much.展开更多
This paper presents a study on a new rumor propagation model with nonlinear propagation rate and secondary propagation rate. We divide the total population into three groups, the ignorant, the spreader and the aware. ...This paper presents a study on a new rumor propagation model with nonlinear propagation rate and secondary propagation rate. We divide the total population into three groups, the ignorant, the spreader and the aware. The nonlinear incidence rate describes the psychological impact of certain serious rumors on social groups when the number of individuals spreading rumors becomes larger. The main contributions of this work are the development of a new rumor propagation model and some results of deterministic and stochastic analysis of the rumor propagation model. The results show the influence of nonlinear propagation rate and stochastic fluctuation on the dynamic behavior of the rumor propagation model by using Lyapunov function method and stochastic related knowledge. Numerical examples and simulation results are given to illustrate the results obtained.展开更多
Using a modified C D function and stochastic frontier model, the paper analyzed China's cotton yield capacity and found that the yield and technical efficiency of China's cotton planting system can be increas...Using a modified C D function and stochastic frontier model, the paper analyzed China's cotton yield capacity and found that the yield and technical efficiency of China's cotton planting system can be increased by the use of genetically modified (GM) varieties.展开更多
The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized tha...The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.展开更多
Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng...Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.展开更多
The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers an...The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.展开更多
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b...Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.展开更多
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
基金National Natural Science Foundation of China(Nos.12272283,12172266).
文摘The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer.
文摘A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.
文摘Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金Equinor for financing the R&D projectthe Institute of Science and Technology of Petroleum Geophysics of Brazil for supporting this research。
文摘We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.
文摘In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate.
基金supported by the National Key R&D Program of China under grant 2020YFB1804901the National Natural Science Foundation of China under grant 62341102。
文摘The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns.
文摘Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment.
文摘In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.
文摘In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochastic system by computing the Lyapunov exponent of the linearized system. Further, the global stability of the stochastic model is analyzed based on the singular boundary theory. Moreover, we prove that the model undergoes a Hopf bifurcation and a pitchfork bifurcation. Finally, several numerical examples are provided to illustrate the theoretical results. .
基金National Natural Science Foundation of China (4007401340134010)Chinese Joint Seismological Science Foundation (042002) and the project during the Tenth Five-year Plan.
文摘Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.
文摘The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system.
文摘At any given time, a product stock manager is expected to carry out activities to check his or her holdings in general and to monitor the condition of the stock in particular. He should monitor the level or quantity available of a given product, of any item. On the basis of the observation made in relation to the movements of previous periods, he may decide to order or not a certain quantity of products. This paper discusses the applicability of discrete-time Markov chains in making relevant decisions for the management of a stock of COTRA-Honey products. A Markov chain model based on the transition matrix and equilibrium probabilities was developed to help managers predict the likely state of the stock in order to anticipate procurement decisions in the short, medium or long term. The objective of any manager is to ensure efficient management by limiting overstocking, minimising the risk of stock-outs as much as possible and maximising profits. The determined Markov chain model allows the manager to predict whether or not to order for the period following the current period, and if so, how much.
文摘This paper presents a study on a new rumor propagation model with nonlinear propagation rate and secondary propagation rate. We divide the total population into three groups, the ignorant, the spreader and the aware. The nonlinear incidence rate describes the psychological impact of certain serious rumors on social groups when the number of individuals spreading rumors becomes larger. The main contributions of this work are the development of a new rumor propagation model and some results of deterministic and stochastic analysis of the rumor propagation model. The results show the influence of nonlinear propagation rate and stochastic fluctuation on the dynamic behavior of the rumor propagation model by using Lyapunov function method and stochastic related knowledge. Numerical examples and simulation results are given to illustrate the results obtained.
文摘Using a modified C D function and stochastic frontier model, the paper analyzed China's cotton yield capacity and found that the yield and technical efficiency of China's cotton planting system can be increased by the use of genetically modified (GM) varieties.
基金supported in part by the NIH grant R01CA241134supported in part by the NSF grant CMMI-1552764+3 种基金supported in part by the NSF grants DMS-1349724 and DMS-2052465supported in part by the NSF grant CCF-1740761supported in part by the U.S.-Norway Fulbright Foundation and the Research Council of Norway R&D Grant 309273supported in part by the Norwegian Centennial Chair grant and the Doctoral Dissertation Fellowship from the University of Minnesota.
文摘The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Project under Grant Number RGP2/302/45supported by the Deanship of Scientific Research,Vice Presidency forGraduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant Number A426).
文摘Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.
基金financial support from the National Key R&D Program of China(Grant No.2020YFA0711802).
文摘The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.
基金supported by the National Natural Science Foundation of China(Grant No.52109010)the Postdoctoral Science Foundation of China(Grant No.2021M701047)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200113).
文摘Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.