The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll...The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.展开更多
In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here...Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software.The results reveal the differences induced by different exhaust system structures,such as an 8-cylinder-inpipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger.After a comparative analysis,the 8-cylinder type with double superchargers is determined to be the optimal solution,and the structure of the exhaust system is further optimized.The simulations show that the optimized maximum exhaust temperature difference among cylinders is reduced by 66%.Finally,the simulation results and the optimized performance of the designed exhaust system are verified through experiments.展开更多
Aim To study the diesel engine management spstem (DEMS). The DEMS can consider many engine parameters and so it can acquire the optimum system performance. Methods On the basis of analyzing the characteristics of die...Aim To study the diesel engine management spstem (DEMS). The DEMS can consider many engine parameters and so it can acquire the optimum system performance. Methods On the basis of analyzing the characteristics of diesel engine electronic system, the real-time, multi-tasks system design methods were used for the heavy duty vehicular diesel engine electronic control system . The hardware and software of DEMS were developed. Results and Conalusion By the test on dieSel engine bed, the system was verified and the foundation of the fully developed DEMS was laid.展开更多
Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The...Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The fractal dimensions of granule distribution and corpuscle superficial area are quite conformed with those of measurement. Conclusion The texture parameters of engine particle cluster can be obtained precisely by use of fractal theory.展开更多
The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressu...The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.展开更多
In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance...In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance was solved. The control system was based on the 8?bit electronic control unit(ECU) system and the assembly language was used to design the software for controlling the engine fuel quantity and the turbocharger of the variable geometry turbine for the heavy duty diesel engine. By changing the timing method for speed acquisition, the problem of speed disturbance was solved and the reliability of the ECU was improved.展开更多
The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofu...The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement.展开更多
Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust ga...Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust gas temperatures. Engine emissions show the quality and completeness of combustion. This paper aims to present the results of a study comparing exhaust emissions from a diesel and syngas powered engine. Syngas was produced from co-firing coal and biomass in a gasifier then cleaned, cooled and applied as an alternative fuel in an engine operated from 0 - 100% load. Exhaust-emissions were monitored at this load conditions. The exhaust-temperature was measured using thermocouples and the emission gases were analyzed using Testo 350. The emissions were lower and decreased as the engine load increased, except for sulphur dioxide and NOx. The study shows that levels of carbon monoxide, were higher in a range of 46.5 - 80.2%, while carbon dioxide was 3.3 - 18% higher compared to those from diesel. Hydrocarbon emissions were 480 and 1250 ppm for diesel and syngas respectively. The study reveals that the engine operates optimally at higher loads since hydrocarbons and oxides of carbon are low due to complete combustion at higher temperatures. Exhaust gas temperature was higher in the syngas fuel and increased as the engine load increased in the range of 455.83 - 480.03˚C which influenced the formation of NOx. NOx from diesel was found to be higher, ranging from 32.5 - 40.5%, compared to those from syngas with an engine load of 75%. The study observed that relative to diesel, the emissions of sulfur dioxide at 50% engine load were lower in a range of 23.7 - 57.1%. Emissions of hydrocarbons depended on the degree of substitution of diesel and engine load. The study therefore shows that, relative to diesel, emissions decreased when syngas was used with upgraded syngas from Prosporis juliflora presenting as the best alternative followed by Hyphanae compressa, and lastly rice husk. For optimal performance of the syngas fuelled engine, the study reports that the engine should be operated at engine loads above 50% with strategies on NOx emissions considered.展开更多
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel e...One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered.It is suggested to conduct the study with the help of mathematical modeling methods.The model takes into account basic physical correlations,material and thermal balances,phase equilibrium,and heat and mass transfer processes.The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel.In such a plant,it is possible to reduce the specific fuel consumption of the diesel engine by 20%.The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6.When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products,the efficiency coefficient of the plant increases by 4%–5%.展开更多
A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater temperature response in different operating conditions is simulated numerically. The effects of single or multipl...A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater temperature response in different operating conditions is simulated numerically. The effects of single or multiple system parameters on the water temperature are analyzed. The results show that, changing different single parameters, the time taken for the steady backwater temperature is different, but relatively short;and if multiple parameters are changed, the time will be longer. Referred to the thermal balance test, the simulation results are validated and provide a basis for the intelligent control of the cooling system.展开更多
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided i...This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).展开更多
The global demand for transport energy is large, growing, and primarily met by petroleum-derived liquid fuels powering internal combustion engines (ICEs). Moreover, the demand for jet fuel and diesel is projected to g...The global demand for transport energy is large, growing, and primarily met by petroleum-derived liquid fuels powering internal combustion engines (ICEs). Moreover, the demand for jet fuel and diesel is projected to grow faster than the demand for gasoline in the future, and is likely to result in low-octane gasoline components becoming more readily available. Significant initiatives with varying motivations are taking place to develop the battery electric vehicle (BEV) and the fuel cell as alternatives to ICE vehicles, and to establish fuels such as biofuels and natural gas as alternatives to conventional liquid fuels. However, each of these alternatives starts from a very low base and faces significant barriers to fast and unrestrained growth;thus, transport—and particularly commercial transport—will continue to be largely powered by ICEs running on petroleum-based liquid fuels for decades to come. Hence, the sustainability of transport in terms of affordability, energy security, and impact on greenhouse gas (GHG) emissions and air quality can only be ensured by improving ICEs. Indeed, ICEs will continue to improve while using current market fuels, through improvements in combustion, control, and after-treatment systems, assisted by partial electrification in the form of hybridization. However, there is even more scope for improvement through the development of fuel/engine systems that can additionally leverage benefits in fuels manufacture and use components that may be readily available. Gasoline compression ignition (GCI), which uses low-octane gasoline in a compression ignition engine, is one such example. GCI would enable diesel-like efficiencies while making it easier to control nitrogen oxides (NOx) and particulates at a lower cost compared with modern diesel engines. Octane on demand (OOD) also helps to ensure optimum use of available fuel anti-knock quality, and thus improves the overall efficiency of the system.展开更多
The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of...The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.展开更多
Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemente...Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.展开更多
To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The c...To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.展开更多
In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influe...In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration.展开更多
Avoiding cavitation inside the water jacket is one of the most important issues regarding the proper design of a diesel engine’s cylinder liner.Using CFD simulations conducted in the frame of a mixture multiphase app...Avoiding cavitation inside the water jacket is one of the most important issues regarding the proper design of a diesel engine’s cylinder liner.Using CFD simulations conducted in the frame of a mixture multiphase approach,a moving grid technology and near-wall cavitation model,in the present study the factors and fluid-dynamic patterns that influence cavitation are investigated from both macroscopic and mesoscopic perspectives.Several factors are examined,namely:wall vibration,water jacket width,initial cavitation bubble radius,coolant temperature,and number of bubbles.The results show that reducing the cylinder liner vibration intensity can significantly weaken the cavitation.Similarly,increasing the water jacket width is instrumental in avoiding cavitation.Increasing the coolant temperature reduces the microjet velocity related to bubble collapse,while increasing the number of bubbles produces a much larger water hammer pressure that can cause more damage to the cylinder liner.展开更多
A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with e...A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with experimental data.The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed.In the spill control valve mode,main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time.In the needle control valve mode,main-injection fuel quantity increases with rising multi-injection dwell time;this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths.Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes;the variation in main-injection quantity is in the range of 1 mm3.展开更多
The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general la...The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA diesel engine, it had obtained better motivity and economy. The full load s teady smog emission and smog emission during simulated free accelerating are all meeting with GB14761.6-93, GB3847-1999 limit requirement. The prototype had p assed reliability test and has reliable parts. It performance indexes are in the leading position in same diesel engine in China. The 13 working conditions gas pollute and particle discharging in this pro totype can meet the limit requirement of GB17691-2001, phase I. The EQ6105DTAA diesel engine parts has good generality with existing types, which lower down th e production cost.展开更多
基金the SINOPEC(124015)and the State Key Laboratory of Engines at Tianjin University(No.K2022-06).
文摘The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
基金the High-Tech Ship Scientific Research Project[MC-201501-D01-01].
文摘Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software.The results reveal the differences induced by different exhaust system structures,such as an 8-cylinder-inpipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger.After a comparative analysis,the 8-cylinder type with double superchargers is determined to be the optimal solution,and the structure of the exhaust system is further optimized.The simulations show that the optimized maximum exhaust temperature difference among cylinders is reduced by 66%.Finally,the simulation results and the optimized performance of the designed exhaust system are verified through experiments.
文摘Aim To study the diesel engine management spstem (DEMS). The DEMS can consider many engine parameters and so it can acquire the optimum system performance. Methods On the basis of analyzing the characteristics of diesel engine electronic system, the real-time, multi-tasks system design methods were used for the heavy duty vehicular diesel engine electronic control system . The hardware and software of DEMS were developed. Results and Conalusion By the test on dieSel engine bed, the system was verified and the foundation of the fully developed DEMS was laid.
文摘Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The fractal dimensions of granule distribution and corpuscle superficial area are quite conformed with those of measurement. Conclusion The texture parameters of engine particle cluster can be obtained precisely by use of fractal theory.
基金the National Natural Science Foundation of China (NSFC) (50909024)Science Fund of State Key Laboratory of Automotive Safety and Energy (KF10102)+1 种基金Basic Research Foundation of Harbin Engineering University(HEUFT09004)The Cooperation Project in Industry,Education and Research of Ministry of Education of Guangdong Province(2009A090100050)
文摘The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.
文摘In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance was solved. The control system was based on the 8?bit electronic control unit(ECU) system and the assembly language was used to design the software for controlling the engine fuel quantity and the turbocharger of the variable geometry turbine for the heavy duty diesel engine. By changing the timing method for speed acquisition, the problem of speed disturbance was solved and the reliability of the ECU was improved.
文摘The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement.
文摘Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust gas temperatures. Engine emissions show the quality and completeness of combustion. This paper aims to present the results of a study comparing exhaust emissions from a diesel and syngas powered engine. Syngas was produced from co-firing coal and biomass in a gasifier then cleaned, cooled and applied as an alternative fuel in an engine operated from 0 - 100% load. Exhaust-emissions were monitored at this load conditions. The exhaust-temperature was measured using thermocouples and the emission gases were analyzed using Testo 350. The emissions were lower and decreased as the engine load increased, except for sulphur dioxide and NOx. The study shows that levels of carbon monoxide, were higher in a range of 46.5 - 80.2%, while carbon dioxide was 3.3 - 18% higher compared to those from diesel. Hydrocarbon emissions were 480 and 1250 ppm for diesel and syngas respectively. The study reveals that the engine operates optimally at higher loads since hydrocarbons and oxides of carbon are low due to complete combustion at higher temperatures. Exhaust gas temperature was higher in the syngas fuel and increased as the engine load increased in the range of 455.83 - 480.03˚C which influenced the formation of NOx. NOx from diesel was found to be higher, ranging from 32.5 - 40.5%, compared to those from syngas with an engine load of 75%. The study observed that relative to diesel, the emissions of sulfur dioxide at 50% engine load were lower in a range of 23.7 - 57.1%. Emissions of hydrocarbons depended on the degree of substitution of diesel and engine load. The study therefore shows that, relative to diesel, emissions decreased when syngas was used with upgraded syngas from Prosporis juliflora presenting as the best alternative followed by Hyphanae compressa, and lastly rice husk. For optimal performance of the syngas fuelled engine, the study reports that the engine should be operated at engine loads above 50% with strategies on NOx emissions considered.
文摘One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered.It is suggested to conduct the study with the help of mathematical modeling methods.The model takes into account basic physical correlations,material and thermal balances,phase equilibrium,and heat and mass transfer processes.The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel.In such a plant,it is possible to reduce the specific fuel consumption of the diesel engine by 20%.The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6.When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products,the efficiency coefficient of the plant increases by 4%–5%.
文摘A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater temperature response in different operating conditions is simulated numerically. The effects of single or multiple system parameters on the water temperature are analyzed. The results show that, changing different single parameters, the time taken for the steady backwater temperature is different, but relatively short;and if multiple parameters are changed, the time will be longer. Referred to the thermal balance test, the simulation results are validated and provide a basis for the intelligent control of the cooling system.
文摘This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
文摘The global demand for transport energy is large, growing, and primarily met by petroleum-derived liquid fuels powering internal combustion engines (ICEs). Moreover, the demand for jet fuel and diesel is projected to grow faster than the demand for gasoline in the future, and is likely to result in low-octane gasoline components becoming more readily available. Significant initiatives with varying motivations are taking place to develop the battery electric vehicle (BEV) and the fuel cell as alternatives to ICE vehicles, and to establish fuels such as biofuels and natural gas as alternatives to conventional liquid fuels. However, each of these alternatives starts from a very low base and faces significant barriers to fast and unrestrained growth;thus, transport—and particularly commercial transport—will continue to be largely powered by ICEs running on petroleum-based liquid fuels for decades to come. Hence, the sustainability of transport in terms of affordability, energy security, and impact on greenhouse gas (GHG) emissions and air quality can only be ensured by improving ICEs. Indeed, ICEs will continue to improve while using current market fuels, through improvements in combustion, control, and after-treatment systems, assisted by partial electrification in the form of hybridization. However, there is even more scope for improvement through the development of fuel/engine systems that can additionally leverage benefits in fuels manufacture and use components that may be readily available. Gasoline compression ignition (GCI), which uses low-octane gasoline in a compression ignition engine, is one such example. GCI would enable diesel-like efficiencies while making it easier to control nitrogen oxides (NOx) and particulates at a lower cost compared with modern diesel engines. Octane on demand (OOD) also helps to ensure optimum use of available fuel anti-knock quality, and thus improves the overall efficiency of the system.
文摘The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.
基金performed within the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC)financed by Portuguese Foundation for Science and Technology(Fundacao para a Ciência e Tecnologia(FCT)),under contract UID/Multi/00134/2013-LISBOA-01-0145-FEDER-007629。
文摘Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.
基金the Ministerial Level Advanced Research Foundation (37256)
文摘To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.
基金supported by the Ministry of Science and Technology of the People’s Republic of China[grant numbers 2017YFC0211304]the Natural Science Foundation of Shandong Province[grant number ZR2019MEE041]the Open Fund of the National Engineering Laboratory for Mobile Source Emission Control Technology[grant number NELMS2017A14].
文摘In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration.
基金supported by the Science Fund of the State Key Laboratory of Engine Reliability(No.SKLER-201902).
文摘Avoiding cavitation inside the water jacket is one of the most important issues regarding the proper design of a diesel engine’s cylinder liner.Using CFD simulations conducted in the frame of a mixture multiphase approach,a moving grid technology and near-wall cavitation model,in the present study the factors and fluid-dynamic patterns that influence cavitation are investigated from both macroscopic and mesoscopic perspectives.Several factors are examined,namely:wall vibration,water jacket width,initial cavitation bubble radius,coolant temperature,and number of bubbles.The results show that reducing the cylinder liner vibration intensity can significantly weaken the cavitation.Similarly,increasing the water jacket width is instrumental in avoiding cavitation.Increasing the coolant temperature reduces the microjet velocity related to bubble collapse,while increasing the number of bubbles produces a much larger water hammer pressure that can cause more damage to the cylinder liner.
基金Supported by the Program for New Century Excellent Talents in University(NECT-11-0826) the National Natural Science Foundation of China(NSFC 51279037)+1 种基金 the Fundamental Research Funds for the Central Universities(HEUCFZ13) the Postdoctoral Science-research Developmental Foundation of Heilongjiang Province(LBH-Q12126)Acknowledgement The authors gratefully acknowledge vice Professor Yong Shi and Jun Sun's help in fuel injection experiment.
文摘A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with experimental data.The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed.In the spill control valve mode,main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time.In the needle control valve mode,main-injection fuel quantity increases with rising multi-injection dwell time;this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths.Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes;the variation in main-injection quantity is in the range of 1 mm3.
文摘The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA diesel engine, it had obtained better motivity and economy. The full load s teady smog emission and smog emission during simulated free accelerating are all meeting with GB14761.6-93, GB3847-1999 limit requirement. The prototype had p assed reliability test and has reliable parts. It performance indexes are in the leading position in same diesel engine in China. The 13 working conditions gas pollute and particle discharging in this pro totype can meet the limit requirement of GB17691-2001, phase I. The EQ6105DTAA diesel engine parts has good generality with existing types, which lower down th e production cost.