期刊文献+
共找到562篇文章
< 1 2 29 >
每页显示 20 50 100
Cement and Lime Stabilization Effect on the Evolutivity of an Expansive Overconsolidated Clay
1
作者 Mohamed Khemissa 《Journal of Civil Engineering and Architecture》 2024年第3期134-140,共7页
This paper presents and analyzes the results of a series of compaction,fragmentability and damage tests performed on an expansive overconsolidated clay treated with cement and lime.This clay was obtained from the urba... This paper presents and analyzes the results of a series of compaction,fragmentability and damage tests performed on an expansive overconsolidated clay treated with cement and lime.This clay was obtained from the urban site of Sidi-Hadjrès city(wilaya of M'sila,Algeria),where significant damages frequently appears in the road infrastructures,roadway systems and light structures.Tests results obtained show that the geotechnical parameters values deduced from these tests are concordant and confirm the evolutivity of this natural clay treated with composed Portland cement or extinct lime and compacted under optimum Proctor conditions. 展开更多
关键词 Expansive clay evolutivity treatment cement lime fragmentability coefficient damage coefficient
下载PDF
The Electrical Resistivity Characteristics of Cement-Soil and Flyash-Lime-Soil 被引量:1
2
作者 于小军 缪林昌 刘松玉 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期55-58,共4页
The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime s... The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice. 展开更多
关键词 electrical resistivity cement soil flyash lime soil
下载PDF
Prediction of Free Lime Content in Cement Clinker Based on RBF Neural Network 被引量:5
3
作者 YUAN Jingling ZHONG Luo +1 位作者 DU nongfu TAO Haizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期187-190,共4页
Considering the fact that free calcium oxide content is an important parameter to evaluate the quality of cement clinker, it is very significant to predict the change of free calcium oxide content through adjusting th... Considering the fact that free calcium oxide content is an important parameter to evaluate the quality of cement clinker, it is very significant to predict the change of free calcium oxide content through adjusting the parameters of processing technique. In fact, the making process of cement clinker is very complex. Therefore, it is very difficult to describe this relationship using the conventional mathematical methods. Using several models, i e, linear regression model, nonlinear regression model, Back Propagation neural network model, and Radial Basis Function (RBF) neural network model, we investigated the possibility to predict the free calcium oxide content according to selected parameters of the production process. The results indicate that RBF neural network model can predict the free lime content with the highest precision (1.3%) among all the models. 展开更多
关键词 RBF neural network cement clinker free lime content
下载PDF
Consolidation behavior of cement—and lime/cement—mixed column foundations 被引量:3
4
作者 蔡袁强 徐长节 《Journal of Zhejiang University Science》 CSCD 2002年第5期507-512,共6页
The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used t... The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used the finite difference method to obtain the pore pressure variation with time at any location below the surface. A computer program developed by the authors was used to draw some interesting conclusions about the consolidation behaviors of cement and lime/cement mixed pile foundation. Finally, a combined model including the permeability coefficients of cement mixed piles and soil, was studied and its feasibility was evaluated. 展开更多
关键词 CONSOLIDATION Axi symmetric cement mixed column lime/cement mixed column Composite foundations
下载PDF
Assessment of Cement-Lime as Stabilizer on Mud Bricks
5
作者 Chrisdel Chancelice Ndjeumi Djonga Paul Nestor Djomou +2 位作者 George Elambo Nkeng Fatoumata Adda Souaibou Soulemane Anong 《Journal of Materials Science and Chemical Engineering》 2024年第7期1-13,共13页
The aim of this study was to evaluate the compressive strength of clay bricks and their stability to water absorption by inserting stabilizers such as lime and cement of 0%, 4%, 6%, 8%, 10%, 12% to 14%. Spectrometric ... The aim of this study was to evaluate the compressive strength of clay bricks and their stability to water absorption by inserting stabilizers such as lime and cement of 0%, 4%, 6%, 8%, 10%, 12% to 14%. Spectrometric analysis was used to characterize the various stabilizers and the clay used, and tests of resistance and water absorption were also carried out. The clay was found to be an aluminosilicate (15.55% to 17.17% Al2O3 and 42.12% to 44.15% SiO2). The lime contains 90.84% CaO and the cement has 17.80% SiO2, 3.46% Al2O3, 2.43% Fe2O3 and 58.47% CaO in the combined form of tricalcium silicate, dicalcium silicate, tricalcium aluminate and ferro-tetra calcium aluminate. The results showed that the insertion of locally available stabilizers (lime and cement) improved the strength of the material by almost 80% when the lime was increased from 0% to 14% for 14 days. For compressed cement, a 65% increase in strength was observed under the same conditions. Strength increases with drying time, with a 52% increase in strength at 28 days compared to 14 days. Furthermore, compressed cement bricks have a more compact structure, absorbing very little water (32%). In view of all these results, cement appears to be the best stabilizer, and compression improves compressive strength and reduces water absorption. 展开更多
关键词 cement-Stabilized Earth lime-Stabilized Earth Compressed Earth Brick Compressive Strength Water Absorption Test
下载PDF
MECHANICAL PERFORMANCE OF LIME-CEMENT MORTAR FOR STRAW-BALE CONSTRUCTION
6
作者 Colin MacDougall Dr.Stephen Vardy 《Journal of Green Building》 2014年第3期100-115,共16页
Experimental data describing the mechanical performance of Portland cement-hydrated lime mortars used for straw bale construction is presented.Straw bale construction uses stacked straw bales plastered on each side to... Experimental data describing the mechanical performance of Portland cement-hydrated lime mortars used for straw bale construction is presented.Straw bale construction uses stacked straw bales plastered on each side to form load-bearing elements.Mortars used have slumps of approximately 50 mm,compared to slumps up to 279 mm for conventional masonry mortars.Cylinder and cube tests of a range of typical straw bale mortar mixes were carried out.The mortars had compressive strengths ranging between 0.3 MPa and 13 MPa.Empirical equations describing the relationships between compressive strength and curing time,w/cm ratio,proportions of lime,cement and sand,and modulus of elasticity are presented.The data show that cement-lime mortars for straw bale construction will have a higher modulus of elasticity and lower failure strain than a conventional mortar of equivalent compressive strength.The Modulus of Elasticity is on average 818 times the compressive strength of a straw bale mortar,compared to 100 to 200 times as reported in the literature for conventional mortar.The average failure strain for straw bale mortar is 0.00253 compared to 0.0087 to 0.0270 reported in the literature for conventional mortar. 展开更多
关键词 Straw-bale construction MorTAR cement hydrated lime compressive strength constitutive model
下载PDF
RECOMMENDATIONS FOR THE SELECTION,STABILIZATION,AND COMPACTION OF SOIL FOR RAMMED EARTH WALL CONSTRUCTION 被引量:1
7
作者 Steve Burroughs 《Journal of Green Building》 2010年第1期101-114,共14页
Rammed earth possesses environmental advantages over most other competing construction materials.However,if it is to be more routinely used in the construction of modern,sustainable buildings,its material properties a... Rammed earth possesses environmental advantages over most other competing construction materials.However,if it is to be more routinely used in the construction of modern,sustainable buildings,its material properties and produc-tion processes must be properly quantified.This paper proposes practical recommendations for soil selection,stabilizer treatment,and on-site compaction for rammed earth,based on a recent set of 219 stabilization experiments.The pur-pose of the recommendations is to maximize the probability of constructing rammed earth walls that meet or exceed a compressive strength criterion of 2 MPa.The recommendations cover:(1)Quantifying the natural soil properties of linear shrinkage and texture in a staged sequence in order to identify suitable soils to stabilize(and to reject unsuit-able soils);(2)Quantifying the amounts of cement and/or lime to be added to the selected soil according to the values of soil properties measured;and(3)Quantifying the forces involved in on-site compaction of stabilized soil(for both manual and pneumatic ramming),and relating these to laboratory-based test standards.Although the recommenda-tions need to be tested and verified/refined using new data,their initial application to rammed earth construction situations in Australia indicates that they have predictive utility.Further research will also indicate the degree of applicability of the recommendations to the production of compressed earth bricks. 展开更多
关键词 building materials rammed earth soil stabilization cement lime compressive strength COMPACTION
下载PDF
Experimental Evaluation and Stabilization of Regional Kaolinite Clay and Mineral Soil by Use of Lime and Cement
8
作者 Ebad Ghanbari Arash Ahmadi Mashinchi Masoud Allameh 《Journal of Geological Resource and Engineering》 2014年第4期229-232,共4页
Soil stabilization is a set of measurements and treatment which apply to soils. The main reason of the measurements is to prepare a soil type which covers the geotechnical engineering necessities like shear resistance... Soil stabilization is a set of measurements and treatment which apply to soils. The main reason of the measurements is to prepare a soil type which covers the geotechnical engineering necessities like shear resistance, bearing capacity, compressibility, etc.. Stabilization methods are generally limited into mechanical and chemical properties of Kaolinite soil. Actually, the first method is by use of stabilization binding agents and the second one is done via construction machines like rollers and tampers. Generally, civil projects or earth projects are mostly getting along with clay soils. Therefore, a sufficient knowledge about the soil property is needed due to their special behavior beside sufficient stabilization methods. In the research, a comparison between lime and cement stabilization agents via proctor standard test is conducted to evaluate mechanical and chemical stabilization methods encountered clay soil sample with kaolinite mineral from Fars region, Iran. 展开更多
关键词 STABILIZATION lime cement chemical stabilization.
下载PDF
Geo-Grid Combined with Concrete and Limestone Columns to Reduce the Embankment Subsidence Located on Inclined Layers of Soft Soil
9
作者 Arash Rostami Morteza Askari Ziarati +1 位作者 Nima Asghari Saman Jahani 《International Journal of Geosciences》 2016年第4期572-583,共12页
Soft soil has low shear strength and its density is high;construction of embankments on them would cause problems such as large and non-uniform subsidence. One way to avoid these subsidence is using of geo-grid combin... Soft soil has low shear strength and its density is high;construction of embankments on them would cause problems such as large and non-uniform subsidence. One way to avoid these subsidence is using of geo-grid combined with cement and lime columns. Geo-grids due to their tensile strength, and cement and lime columns due to their bearing capacity and their body friction, reduce embankment subsidence. Extensive researches have been done in order to reduce the subsidence of the embankments located on the roads, but few studies have being done about the inclined embankments on soft soil layers. In this paper, the road embankment has been located on inclined soft soil layers;the study will try to reduce embankment subsidence and uniform them using geo-grid combined with cement and lime column subsidence. The results show that the realization of this issue will cause subsidence reduction and uniformity in the embankment surface. 展开更多
关键词 Inclined Layering Integration of Subsidence Geo-Grid cement and lime Columns Software Plexis
下载PDF
Comprehensive Analysis of the Effects of Superplasticizer Variation on the Workability and Strength of Ready-Mix Concrete
10
作者 Tahsin Tareque Fahmid Tousif +2 位作者 Mirza Addaito Billah Abdullah Al Masum Jabir Seyedali Mirmotalebi 《Open Journal of Civil Engineering》 2023年第4期756-770,共15页
This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers ... This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector. 展开更多
关键词 Admixture dosage Slump Test Water-cement Ratio Concrete Compositions Compressive Strength
下载PDF
Stabilization effects of surplus soft clay with cement and GBF slag 被引量:1
11
作者 LUJiang ChirdchaninMODMOLTIN KatsutadaONITSUKA 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第3期397-403,共7页
Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of ... Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration. 展开更多
关键词 surplus soft clay STABILIZATION GBF slag cement organic matter lime humic acid
下载PDF
Freeze-thaw performance of chemically stabilized natural and recycled highway materials
12
作者 Tuncer B.Edil Bora Cetin 《Research in Cold and Arid Regions》 CSCD 2015年第5期482-491,共10页
This article provides an overview of several previous studies that investigated the stiffness and strength performance of chemically stabilized roadway materials under winter conditions (freeze-thaw cycling). The ob... This article provides an overview of several previous studies that investigated the stiffness and strength performance of chemically stabilized roadway materials under winter conditions (freeze-thaw cycling). The objective of this research was to understand the behavior of different materials stabilized with different type of binders when they were subjected to freeze-thaw cycling. Nine different materials including natural soils (organic soil, clay, silt, sand, and road surface gravel), reclaimed pavement material, and recycled asphalt pavement stabilized with nine different binders (five different fly ashes, lime, cement, lime kiln dust, cement kiln dust) were discussed. This article investigated how the volume, resilient modulus and unconfined compressive strength of soils/materials stabilized with different binders change in response to freeze-thaw cycling. Overall, the review results indicate that the stiffness and strength of all stabilized materials decrease somewhat with freeze-thaw cycling. However, the reduced strength and stiffness of stabilized materials after freeze-thaw cycling was still higher than that of unstabilized-unfrozen original soils and materials. In addition, materials stabilized with cement kiln dust provided the best performance against freeze-thaw cycling. 展开更多
关键词 FREEZE-THAW soil stabilization cement fly ash lime
下载PDF
Weak Expansive Soil Physical Properties Modification by Means of a Cement-Jute Fiber
13
作者 Zisheng Yang Wendong Li +2 位作者 Xuelei Cheng Ran Hai Shunqun Li 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2119-2130,共12页
Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted t... Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted to analyze the liquid plastic limit,the particle distribution and the free expansion rate.The results show that:(1)With an increase in the cement-jute fiber content,the free expansion rate of the modified expansive soil gradually decreases,however,such a rate rebounds when the fiber content exceeds 0.5%and the cement content exceeds 6%.(2)With an increase in the cement percentage,the particle unevenness coefficient(Cu)and curvature coefficient(Cc)of the modified expansive soil tend to grow gradually.The Cc coefficient reaches 1.0 when the cement content is 6%.The unevenness coefficient of 16 soil samples is greater than 5.0,however,the Cu coefficient decreases when the cement content reaches 6%.(3)The plastic limit of soil increases as the cement content is made higher,while the liquid limit and plastic index decrease gradually.When the content of the modified material is 2%+0.1%~2%+0.7%(Cement content+jute fiber content),the change of particle size distribution is most obvious.(4)When the contents of cement and jute fiber are is 6%and 0.5%,respectively,the modification induced in the physical properties of soil samples corresponds to the best case. 展开更多
关键词 cement jute fiber expansive soil EXPANSION optimal dosage
下载PDF
Biopolymer stabilization of clayey soil
14
作者 Mahdieh Azimi Amin Soltani +2 位作者 Mehdi Mirzababaei Mark B.Jaksa Nanjappa Ashwath 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2801-2812,共12页
This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on... This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms. 展开更多
关键词 Soil stabilization High plasticity clay Biopolymer dosage Hydrated lime Curing time Unconfined compressive strength(UCS)
下载PDF
Embodied Energy &Cost Issues of Tank-Bed-Lime Based Geopolymer Adobes
15
作者 T. K. Jyothi B. N. Varsha +1 位作者 S. Raghunath K. S. Jagadish 《Open Journal of Energy Efficiency》 2017年第3期128-139,共12页
It is well-known that a product or a system is sustainable if it is economically viable, socially acceptable and environmentally friendly. Load bearing masonry is one such example which is quite sustainable, especiall... It is well-known that a product or a system is sustainable if it is economically viable, socially acceptable and environmentally friendly. Load bearing masonry is one such example which is quite sustainable, especially if the masonry units are locally available. It is important to quantify the environmental benefits and cost, if an alternative to an existing technology is to be suggested. Of course the issues related to acceptance have to be discussed and addressed. This paper presents the quantification of embodied energy and cost of lime-pozzolana-cement (LPC) geopolymer based masonry units made using locally available bulk ingredients viz. tank-bed soil (TBS) and brick-powder (BP). The masonry adobe units developed have achieved the target performance in terms of strength, low water absorption and relative ease of production. Simultaneously the issues related to cost are also discussed in this paper. The studies have revealed that the bulk contributor to embodied energy and cost of geopolymer adobes are the alkaline materials viz sodium hydroxide and sodium silicate. However, the embodied energy and cost per unit strength appears to be better than that of conventional table moulded bricks in south India, especially when alkaline solution at 2M concentration is used with LPC. 展开更多
关键词 GEOPOLYMER BRICKS EMBODIED Energy lime-Pozzolana cement COST
下载PDF
Stabilization of expansive soils using chemical additives: A review 被引量:7
16
作者 Dharmendra Barman Sujit Kumar Dash 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1319-1342,共24页
Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance... Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements.This can be achieved through chemical stabilization using additives such as lime,cement and fly ash.In this paper,suitability of such additives under various conditions and their mechanisms are reviewed in detail.It is observed that the stabilization process primarily involves hydration,cation exchange,flocculation and pozzolanic reactions.The degree of stabilization is controlled by several factors such as additive type,additive content,soil type,soil mineralogy,curing period,curing temperature,delay in compaction,pH of soil matrix,and molding water content,including presence of nano-silica,organic matter and sulfate compounds.Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction.However,presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones. 展开更多
关键词 Expansive soil cement lime Fly ash Pozzolanic reactions Sulfate attack
下载PDF
Assessment of Heavy Metals Immobilization in Artificially Contaminated Soils Using Some Local Amendments 被引量:2
17
作者 Noha H. Abdel-Kader Reda R. Shahin Hasan A. Khater 《Open Journal of Metal》 2013年第2期68-76,共9页
Three alluvial soil samples with different textures were artificially polluted with chloride solutions of Cd, Pb, Co and chromate solution for Cr. The aqua-regia extracted concentration ranges in the artificially poll... Three alluvial soil samples with different textures were artificially polluted with chloride solutions of Cd, Pb, Co and chromate solution for Cr. The aqua-regia extracted concentration ranges in the artificially polluted soils were 1134 - 1489 mg·kg-1 for Pb, 854 - 938 mg·kg-1 for Cr, 166 - 346 mg·kg-1 for Co and 44 - 54 mg·kg-1 for Cd. The aqua-regia extracted metals were the highest in the spiked clay soil due to its high adsorption capacity. Rock phosphate (PR), lime-stone (LS) and Portland-cement (Cem) were mixed with the spiked soils at 1% and 2% rates (w/w) and incubated at 30 C for 2, 7, 14, 30, 60, 150 and 360 days. The extracted DTPA metals significantly decreased with different magnitudes with increasing the incubation period accompanied by increases in both pH and EC. The data showed that cement (Cem) treatment dropped the DTPA-Pb from @ 1000 to @ 400 mg·kg-1 in all the studied soils (60% decrease) in the first 2 months while it gradually decreased from 400 to 200 mg·kg-1 (20% decrease) in the next 10 months. Limestone (LS) and rock phosphate (PR) materials were relatively less effective in lowering DTPA-Pb after 12 months of incubation. The data showed also that cement (Cem) treatment was the most effective one in lowering DTPA-Cd by @ 60% as compared to the un-amended soils after 12 months of soil incubation. Extractable DTPA-Co and Cr showed consistent decreases with time down to nearly 50% of un-amended soils due to the effect of the added amendments after 12 months of incubation with superior reductions for the cement treatment in all the investigated soils. The statistical analysis confirmed that in all the studied metals and treatment, cement treatment (Cem) was significantly the most effective in lowering the DTPA extracted metals as indicated from LSD test. It was found that up to 73% and 57% of the applied Pb and Cd, respectively, were fixed by only 1% cement. However, the present study showed that from the practical and economic points of view, that 1% Cement was the best treatment to immobilize Pb and Cd from all the artificially polluted soils. 展开更多
关键词 HEAVY Metals IMMOBILIZATION Efficiency Rock PHOSPHATE Portland cement lime-Stone
下载PDF
Valuation of Laterite in Low-cost Building in West Africa
18
作者 Ibrahima Sow Ibrahima Khalil Cisse Souleymane Mbingue 《Journal of Architectural Environment & Structural Engineering Research》 2020年第3期1-3,共3页
The study of the performance of raw clay bricks has made it possible to develop laterite in Eco village construction projects.Identification tests(particle size analysis,Atterberg limits,Proctor,shrinkage limit,and sa... The study of the performance of raw clay bricks has made it possible to develop laterite in Eco village construction projects.Identification tests(particle size analysis,Atterberg limits,Proctor,shrinkage limit,and sand equivalent)made it possible to characterize the laterite,the sand,and the E1 mixture(70%laterite and 30%sand).By adding binders to E1,three other types of mixtures E2,E3,and E4 have been proposed.The improved E1 sample:(1)At 2.5%of cement gives E2;(2)At 10%of lime gives E3;(3)with 0.8%lignosulfonates.After making the bricks using the samples E1,E2,E3,and E4,we perform uniform compression test at 3,7,and 21 days.All samples have simple compressive strengths greater than 0.5 MPa(in accordance with standard NF EN 771-1)after 3 days.Their evolution from 0.5 to 2.5 MPa,between 3 and 7 days,shows a jump of 1.5.From 7 to 21 days the evolution curve of the Rc shows a slight ascension then a plateau pace(2.5,2.51,2.56 MPa).From these results,we concluded that they were used according to the area and the type of climate.The use of the sample E1 is proposed in arid zones or with low rainfall,the sample E2,and E3 in the rainy zones without risk of capillary rise and the sample E4 in the rainy zones with the risk of capillary rise. 展开更多
关键词 BRICK cement lime LIGNOSULFONATES Simple compression Eco village
下载PDF
Causes of Cracks on Structures in Ngara-Tanzania
19
作者 Fikiri Fredrick Magafu Wu Li 《Engineering(科研)》 2010年第12期958-961,共4页
Development of macro and micro cracks on plastered walls and floors have been studied at different sites under site investigation whereby building inspections, construction history, engineering properties of soil and ... Development of macro and micro cracks on plastered walls and floors have been studied at different sites under site investigation whereby building inspections, construction history, engineering properties of soil and building surroundings assessment were conducted. We did revision of structural calculations and laboratory experiment to find out the source of cracks. Micro and macro cracks have no structural problems on the structure so long as the developed cracks are within the serviceability limit state [1]. There are two main causes of cracks in the structure that are structural and nonstructural sources [2]. The first task was to identify whether the source of cracks are structural or non structural. During site investigation the modes of crack formation, depth and length of crack, crack patterns and direction were studied at different sites in Ngara. Theoretical calculations of crack width and particles size distribution of sand from three main sources were analyzed after performing both sieve analysis and decantation tests. In depth site investigation, literature review and laboratory tests result showed that the causes of cracks are nonstructural and all three reliable sources of sand in Ngara contain more quantities of fines than that specified in BS 882. This paper is looking for the causes of cracks on structures and recommending further research on new idea of using simple technology and low cost methods that is affordable by both the government of Tanzania and local community of Ngara to overcome the problem of structures that develop micro and macro cracks. 展开更多
关键词 MACRO Cracks Micro Cracks lime Stabilized cement-Sand MorTAR SILT and CLAY Soils
下载PDF
糯米浆灰土无侧限压缩和三轴剪切离散元分析 被引量:2
20
作者 李涛 薛锦 +2 位作者 杨立靖 李家乐 杨襟铭 《科学技术与工程》 北大核心 2024年第10期4215-4221,共7页
糯米浆灰土是一种常见的遗址保护建筑材料,为研究糯米浆灰土压缩加载过程中的糯米-石灰胶结破坏和接触组构演化情况,采用离散单元法开展了糯米浆灰土无侧限压缩和三轴剪切离散元模拟。首先基于软胶结模型考虑糯米浆-石灰的强度特征,制... 糯米浆灰土是一种常见的遗址保护建筑材料,为研究糯米浆灰土压缩加载过程中的糯米-石灰胶结破坏和接触组构演化情况,采用离散单元法开展了糯米浆灰土无侧限压缩和三轴剪切离散元模拟。首先基于软胶结模型考虑糯米浆-石灰的强度特征,制备了糯米浆灰土离散元试样;然后通过参数敏感性分析为试样赋予合理的接触模型等效模量和胶结强度参数,最后对试样开展无侧限和三轴压缩模拟。结果表明:离散元模拟能再现糯米浆灰土加载试验的主要特征;加载过程中胶结破坏数量先缓后快增加,最终趋于平缓,胶结破坏呈现一定的聚集效应;无侧限压缩下胶结接触主要发生拉伸破坏,随着围压增加,剪切破坏接触数量增加;试样偏组构快速增加段为胶结破坏诱发。 展开更多
关键词 糯米浆灰土 胶结颗粒力学 离散单元法 无侧限压缩试验 三轴试验
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部