The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phospho...Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phosphors increases with the increase of x value in Y 0.9-xGd xEu 0.1BO 3 (prepared by SD) due to an energy migration process like Gd 3+-(Gd 3+) n-Eu 3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1~3 μm) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.展开更多
The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights ...The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials.展开更多
Yaha condensate gas reservoir is condensate gas reservoir developed by gas injection in the Tarim Basin.The practice of gas injection in condensate gas reservoir shows that the key to improve gas injection effect is t...Yaha condensate gas reservoir is condensate gas reservoir developed by gas injection in the Tarim Basin.The practice of gas injection in condensate gas reservoir shows that the key to improve gas injection effect is to control gas channeling.Dynamic monitoring shows that there is no instantaneous miscibility between dry gas and condensate gas during gas injection.Based on the principle of entropy increase and mass transfer kinetics,the phase behavior of condensate gas and dry gas in reservoir is analyzed theoretically.The new technique to improve condensate recovery is adopted for condensate gas field.By using the density difference and seepage characteristics of dry gas and condensate gas,the injected dry gas cap is formed at the top of the gas reservoir,and the three-dimensional displacement is realized by the expansion of dry gas cap.Gas injection gravity assisted flooding technology is to realize vertical displacement of injected gas through the expansion of dry gas cap by using gravity differentiation caused by gas density difference.This technology can keep the front edge of gas injection advance evenly and solve the problem of gas channeling in the process of cyclic gas injection.展开更多
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.
文摘Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phosphors increases with the increase of x value in Y 0.9-xGd xEu 0.1BO 3 (prepared by SD) due to an energy migration process like Gd 3+-(Gd 3+) n-Eu 3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1~3 μm) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.
基金wish to express their appreciation to Vale S.A.and Brazilian Research Council(CNPq)for the support to the research group.
文摘The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials.
文摘Yaha condensate gas reservoir is condensate gas reservoir developed by gas injection in the Tarim Basin.The practice of gas injection in condensate gas reservoir shows that the key to improve gas injection effect is to control gas channeling.Dynamic monitoring shows that there is no instantaneous miscibility between dry gas and condensate gas during gas injection.Based on the principle of entropy increase and mass transfer kinetics,the phase behavior of condensate gas and dry gas in reservoir is analyzed theoretically.The new technique to improve condensate recovery is adopted for condensate gas field.By using the density difference and seepage characteristics of dry gas and condensate gas,the injected dry gas cap is formed at the top of the gas reservoir,and the three-dimensional displacement is realized by the expansion of dry gas cap.Gas injection gravity assisted flooding technology is to realize vertical displacement of injected gas through the expansion of dry gas cap by using gravity differentiation caused by gas density difference.This technology can keep the front edge of gas injection advance evenly and solve the problem of gas channeling in the process of cyclic gas injection.