期刊文献+
共找到1,512篇文章
< 1 2 76 >
每页显示 20 50 100
Static and dynamic mechanical behaviour of ECO-RPC 被引量:2
1
作者 赖建中 孙伟 +1 位作者 林玮 金祖权 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期197-202,共6页
Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacemen... Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacement of ground fine quartz sand with natural fine aggregate.The effect of steel fiber volume fraction and curing ages on the static mechanical behaviour ofECO-RPC was studied. Using the split Hopkinson pressure bar technique, the dynamic mechanicalbehaviour of ECO-RPC was investigated under different strain rates. The results show that the staticmechanical behaviour of ECO-RPC increases with the increase of steel fiber volume fraction andcuring ages. The type of ECO-RPC with the substitution of 25% ultra-fine slag, 25% ultra-fine flyash and 10% silica fume is better than the others with compressive strength, flexural strength, andfracture energy more than 200 MPa, 60 MPa and 30 kJ/m^2, respectively. ECO-RPC has excellent strainrate stiffening effects under dynamic load. Its peak stress, peak strain and the area understrain-stress curve increase with the increase of strain rate. Its fracture pattern changes frombrittleness to toughness under high strain rates. 展开更多
关键词 ecological reactive powder concrete (ECO-RPC) industrial waste powder interfacial bond strength fracture energy static and dynamic mechanical behaviour high strainrate
下载PDF
Dynamic mechanical characteristics of deep Jinping marble in complex stress environments
2
作者 Chendi Lou Heping Xie +6 位作者 Ru Zhang Hai Ren Hao Luo Kun Xiao Yuan Peng Qiang Tan Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期630-644,共15页
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ... To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth. 展开更多
关键词 Rock mechanics Split-Hopkinson pressure bar Coupled staticdynamic loading Different depths Holmquist-Johnson-Cook(HJC)model
下载PDF
Flexible Load Participation in Peaking Shaving and Valley Filling Based on Dynamic Price Incentives
3
作者 Lifeng Wang Jing Yu Wenlu Ji 《Energy Engineering》 EI 2024年第2期523-540,共18页
Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various ... Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs. 展开更多
关键词 Demand response fixed time-of-use electricity price mechanism dynamic price incentives mechanism bi-level model flexible load
下载PDF
Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core 被引量:3
4
作者 M.GRYGOROWICZ E.MAGNUCKA-BLANDZI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1361-1374,共14页
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ... The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables. 展开更多
关键词 mathematical modelling dynamic stability metal foam core with variable mechanical property static and dynamic equilibrium path angular frequency
下载PDF
Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review 被引量:80
5
作者 Xibing Li Fengqiang Gong +5 位作者 Ming Tao Longjun Dong Kun Du Chunde Ma Zilong Zhou Tubing Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期767-782,共16页
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the... Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced. 展开更多
关键词 Deep rock mechanics Coupled static-dynamic loading ROCKBURST Discontinuous rock failure Microseismic source location Continuous mining
下载PDF
Summery Intra-Tidal Variations of Suspended Sediment Transportation–Topographical Response and Dynamical Mechanism in the Aoshan Bay and Surrounding Area,Shandong Peninsula
6
作者 WANG Yan DOU Yanguang +5 位作者 ZOU Liang GAO Fei SU Dapeng HU Rui YUE Baojing XUE Biying 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第6期1398-1408,共11页
As the second largest bay in Qingdao,the Aoshan Bay and its adjacent sea area play an important role in aquaculture development and urban land and sea coordination for the eastern gulf type of city in the Qingdao Blue... As the second largest bay in Qingdao,the Aoshan Bay and its adjacent sea area play an important role in aquaculture development and urban land and sea coordination for the eastern gulf type of city in the Qingdao Blue Silicon Valley Core Area(QBSVCA).Based on in-situ sedimentary dynamical observation and previous research results,the thermohaline structure,the transportation of suspended sediment and its mechanism,and the coastal geomorphic response were elaborated and analyzed in detail in this paper.The result indicated that the thermohaline and density distribution have obvious intra-tidal characteristics in the QBSVCA and the adjacent waters of the islands,during summer neap tide stage.The development of the bottom high suspended sediment concentration(SSC)layer was slightly enhanced in flood slack at each of the four stations.Suspended sediment transportation near the QBSVCA is related closely with the vertical mixing-stratification mechanism.Combined with previous research results,this study once again showed that submarine topography and the grain size of sea bed sediments would respond to hydrodynamic forces.The medians of the bottom E and D50 in the Aoshan Bay were the highest,followed by those in the Daguan Island and Xiaoguan Island,and the data in the Laoshan Bay were the lowest.This showed that the capacity of suspended sediment transportation in the bottom water layer of the Aoshan Bay was stronger than that of the adjacent sea area.The re-suspension and migration of fine sediments lead to the strong coarsening of sediments in this area. 展开更多
关键词 suspended sediment transportation thermohaline structure dynamical mechanism topographical response coastal environment
下载PDF
External blast flow field evolution and response mechanism of single-layer reticulated dome structure 被引量:2
7
作者 Shao-bo Qi Guang-yan Huang +1 位作者 Xu-dong Zhi Feng Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期241-253,共13页
Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understandin... Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes. 展开更多
关键词 External blast loading Reticulated dome structure Fluid-structure interaction dynamic response mode response mechanism
下载PDF
DYNAMIC RESPONSE OF ROLLER GEAR INDEXING CAM SYSTEM CONSIDERING CLEARANCE AND MOTOR CHARACTERISTIC 被引量:4
8
作者 Chang Zongyu Civil Aviation College,Nanjing University of Aeronautics and Astronautics Zhang Ce Yang Yuhu Wang Yuxin Tianjin University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第2期189-192,共4页
The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexib... The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs. 展开更多
关键词 Roller gear indexing cam mechanism CLEARANCE Motor characteristic dynamic response
下载PDF
Effect of static transmission error on dynamic responses of spiral bevel gears 被引量:3
9
作者 唐进元 胡泽华 +1 位作者 吴丽娟 陈思雨 《Journal of Central South University》 SCIE EI CAS 2013年第3期640-647,共8页
The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the ... The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the spiral bevel gear model were adopted,where the static transmission error was expressed in two patterns as predesigned parabolic function and sine function of transmission errors.The dynamic response,bifurcation map,time domain response,phase curve and Poincare map were obtained by applying the explicit Runge-Kutta integration routine with variable-step.A comparative study was carried out and some profound phenomena were detected.The results show that there are many different kinds of tooth rattling phenomena at low speed.With the increase of speed,the system enters into stable motion without any rattling in the region(0.72,1.64),which indicates that the system with predesigned parabolic function of transmission error has preferable capability at high speed. 展开更多
关键词 spiral bevel gear static transmission error dynamic response BIFURCATION
下载PDF
Dynamic modelling and engineering simulation of fluid mechanics in water injectors
10
作者 JIA Deli WEN Haoyang +3 位作者 SUN Fuchao WANG Quanbin YANG Qinghai FU Tao 《Petroleum Exploration and Development》 SCIE 2023年第5期1236-1245,共10页
To study the fluid dynamic response mechanism under the working condition of water injection well borehole,based on the microelement analysis of fluid mechanics and the classical theory of hydrodynamics,a fluid microe... To study the fluid dynamic response mechanism under the working condition of water injection well borehole,based on the microelement analysis of fluid mechanics and the classical theory of hydrodynamics,a fluid microelement pressure-flow rate relationship model is built to derive and solve the dynamic distribution of fluid pressure and flow rate in the space of well borehole.Combined with the production data of a typical deviated well in China,numerical simulations and analyses are carried out to analyze the dynamic distribution of wellbore pressure at different injection pressures and injection volumes,the delayed and attenuated characteristics of fluid transmission in tube,and the dynamic distribution of wellbore pressure amplitude under the fluctuation of wellhead pressure.The pressure loss along the wellbore has nothing to do with the absolute pressure,and the design of the coding and decoding scheme for wave code communication doesn’t need to consider the absolute pressure during injecting.When the injection pressure is constant,the higher the injection flow rate at the wellhead,the larger the pressure loss along the wellbore.The fluid wave signal delay amplitude mainly depends on the length of the wellbore.The smaller the tubing diameter,the larger the fluid wave signal attenuation amplitude.The higher the target wave code amplitude(differential pressure identification root mean square)generated at the same well depth,the greater the wellhead pressure wave amplitude required to overcome the wellbore pressure loss. 展开更多
关键词 zonal water injection wellbore fluid fluid mechanics dynamic response wireless communication
下载PDF
Finite Deformation, Finite Strain Nonlinear Dynamics and Dynamic Bifurcation in TVE Solids
11
作者 Karan S. Surana Sri Sai Charan Mathi 《Applied Mathematics》 2023年第12期773-838,共66页
This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation the... This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation theorem for thermoviscoelastic solids (TVES) matter without memory. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics. This mathematical model is thermodynamically and mathematically consistent and is ideally suited to study nonlinear dynamics of TVES and dynamic bifurcation and is used in the work presented in this paper. The finite element formulations are constructed for obtaining the solution of the initial value problems (IVPs) described by the mathematical models. Both space-time coupled as well as space-time decoupled finite element methods are considered for obtaining solutions of the IVPs. Space-time coupled finite element formulations based on space-time residual functional (STRF) that yield space-time variationally consistent space-time integral forms are considered. This approach ensures unconditional stability of the computations during the entire evolution. In the space-time decoupled finite element method based on Galerkin method with weak form for spatial discretization, the solutions of nonlinear ODEs in time resulting from the decoupling of space and time are obtained using Newmark linear acceleration method. Newton’s linear method is used to obtain converged solution for the nonlinear system of algebraic equations at each time step in the Newmark method. The different aspects of the deformation physics leading to the factors that influence nonlinear dynamic response and dynamic bifurcation are established using the proposed mathematical model, the solution method and their validity is demonstrated through model problem studies presented in this paper. Energy methods and superposition techniques in any form including those used in obtaining solutions are neither advocated nor used in the present work as these are not supported by calculus of variations and mathematical classification of differential operators appearing in nonlinear dynamics. The primary focus of the paper is to address various aspects of the deformation physics in nonlinear dynamics and their influence on dynamic bifurcation phenomenon using mathematical models strictly based on CBL of CCM using reliable unconditionally stable space-time coupled solution methods, which ensure solution accuracy or errors in the calculated solution are always identified. Many model problem studies are presented to further substantiate the concepts presented and discussed in the paper. Investigations presented in this paper are also compared with published works when appropriate. 展开更多
关键词 thermodynamic Consistency dynamic Bifurcation static Bifurcation Nonlinear Formulation Finite Strain Finite Deformation thermoviscoelastic Classical Continuum Mechanics Conservation and Balance Laws Nonlinear Damping
下载PDF
THE DESIGN AND ANALYSIS OF VIBRATION STRUCTURE OF VERTICAL DYNAMIC BALANCING MACHINE 被引量:1
12
作者 LiDinggen CaoJiguang +1 位作者 WangJtmwen ChenChuanyao 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第2期172-182,共11页
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona... A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines. 展开更多
关键词 vertical dynamic balancing machine vibration structure static unbalance coupled unbalance modal analysis harmonic response analysis
下载PDF
Experimental Study of the Motion Modes of a Planar Mechanical System with Multi-Clearance Revolute Joints
13
作者 Kifatsoa Kolani Mutuku Muvengei +1 位作者 Joshua Ngoret James Kimotho 《Open Journal of Applied Sciences》 2023年第11期2014-2031,共18页
Clearances in joints of a mechanical multibody system can induce impulsive forces, leading to vibrations that compromise the system’s reliability, stability, and lifespan. Through dynamic analysis, designers can inve... Clearances in joints of a mechanical multibody system can induce impulsive forces, leading to vibrations that compromise the system’s reliability, stability, and lifespan. Through dynamic analysis, designers can investigate the effects of the clearances on the dynamics of the multibody system. A revolute joint with clearance exhibits three motions which are;free-flight, impact and continuous contact motion modes. Therefore, a multibody system with n-number of revolute clearance joints will exhibit 3n motion modes which are a combination of the three motions in each joint. This study investigates experimentally the nine motion modes in a mechanical system with two revolute clearance joints. A slider crank mechanism has been used as the demonstrative example. We observed that the experimental curve exhibits a greater impact compared to the simulation curve. In conclusion, this experimental investigation offers valuable insights into the dynamics of planar mechanical systems with multiple clearance revolute joints. Utilizing a slider-crank mechanism for data acquisition, the study successfully confirmed seven out of nine motion modes previously identified in numerical research. The missing modes are attributed to inherent complexities in real-world systems, such as journal-bearing misalignment. 展开更多
关键词 Slider Crank Mechanism dynamic responses Revolute Clearance Joints Motion Modes
下载PDF
Stability of bedded rock slopes subjected to hydro-fluctuation and associated strength deterioration
14
作者 Bin Xu Xinrong Liu +2 位作者 Yue Liang Xiaohan Zhou Zuliang Zhong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3233-3257,共25页
Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.... Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.Three models of typical bedded rock slopes(BRSs),i.e.gently(GIS),moderately(MIS),and steeply(SIS)inclined slopes,were proposed according to field investigations.The dynamic response mechanism and stability of the BRSs,affected by the rock mass deterioration of the HFB,were investigated by the shaking table test and the universal distinct element code(UDEC)simulation.Specifically,the amplification coefficient of the peak ground acceleration(PGA)of the slope was gradually attenuated under multiple seismic loads,and the acceleration response showed obvious“surface effect”and“elevation effect”in the horizontal and vertical directions,respectively.The“S-type”cubic function and“steep-rise type”exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves(low seismic waves)and high seismic waves,respectively.According to the dynamic responses of the acceleration,cumulative displacement,rock pressure,pore water pressure,damping ratio,natural frequency,stability coefficient,and sliding velocity of the slope,the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized,and the numerical and experimental results were compared.Considering the dynamic effects of the slope height(SH),slope angle(SA),bedding plane thickness(BPT),dip angle of the bedding plane(DABP),dynamic load amplitude(DLA),dynamic load frequency(DLF),height of water level of the hydro-fluctuation belt(HWLHFB),degradation range of the hydro-fluctuation belt(DRHFB),and degradation shape of the hydro-fluctuation belt(DSHFB),the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method(OAM)was DLA>DRHFB>SA>SH>DLF>HWLHFB>DSHFB>DABP>BPT. 展开更多
关键词 Bedded rock slopes Hydro-fluctuation belt Shaking table test UDEC simulation dynamic response mechanism
下载PDF
Research on Operation Optimization of Energy Storage Power Station and Integrated Energy Microgrid Alliance Based on Stackelberg Game
15
作者 Yu Zhang Lianmin Li +1 位作者 Zhongxiang Liu Yuhu Wu 《Energy Engineering》 EI 2024年第5期1209-1221,共13页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment ... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs. 展开更多
关键词 Energy storage station dynamic pricing mechanism stackelberg game integrated energy multi-microgrid alliance demand response
下载PDF
GENERAL ANALYTIC SOLUTION OF DYNAMIC RESPONSE OF BEAMS WITH NONHOMOGENEITY AND VARIABLE CROSS-SECTION
16
作者 叶开沅 童晓华 纪振义 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第9期779-791,共13页
In this paper, a new method, the step-reduction method, is proposed to investigate the dynamic response of the Bernoulli-Euler beams with arbitrary nonhomogeneity and arbitrary variable cross-section under arbitrary l... In this paper, a new method, the step-reduction method, is proposed to investigate the dynamic response of the Bernoulli-Euler beams with arbitrary nonhomogeneity and arbitrary variable cross-section under arbitrary loads. Both free vibration and forced vibration of such beams are studied. The new method requires to discretize the space domain into a number of elements. Each element can be treated as a homogeneous one with uniform thickness. Therefore, the general analytical solution of homogeneous beams with uniform cross-section can be used in each element. Then, the general analytic solution of the whole beam in terms of initial parameters can be obtained by satisfying the physical and geometric continuity conditions at the adjacent elements. In the case of free vibration, the frequency equation in analytic form can be obtained, and in the case of forced vibration, a final solution in analytical form can also be obtained which is involved in solving a set of simultaneous algebraic equations with only two unknowns which are independent of the numbers of elements divided. The present analysis can also be extended to the study of the vibration of such beams with viscous and hysteretic damping and other kinds of beams and other structural elements with arbitrary nonhomogeneity and arbitrary variable thickness. 展开更多
关键词 DAMPING dynamic loads dynamic response Finite element method Mathematical models Vibrations (mechanical)
下载PDF
Dynamics Response and Non⁃linear Characteristics Analysis of Complex Planar 2⁃DOF Mechanism with Revolute Clearances
17
作者 Xiulong Chen Peng Pan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2021年第2期82-96,共15页
There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this a... There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena. 展开更多
关键词 planar linkage mechanism revolute clearances dynamic response non⁃linear characteristic analysis chaotic phenomena
下载PDF
The response law of far-field seismic ground motion of the Wenchuan earthquake and its damaging mechanism in the Loess Plateau
18
作者 Xiaowu Pu Lanming Wang +4 位作者 Ping Wang Xiufeng Tian Shiyang Xu Shaofeng Chai Haitao Guo 《Earthquake Research Advances》 CSCD 2022年第3期37-48,共12页
A series of housing collapses and other serious damage was caused by the 2008 Wenchuan M_(S)8.0 earthquake in the seismic intensity Ⅵ areas of the Loess Plateau, which is hundreds of kilometers away from the epicente... A series of housing collapses and other serious damage was caused by the 2008 Wenchuan M_(S)8.0 earthquake in the seismic intensity Ⅵ areas of the Loess Plateau, which is hundreds of kilometers away from the epicenter, and which showed a remarkable seismic intensity anomaly. The seismic disasters are closely related to the seismic response characteristics of the site, therefore, the systematic study of the far-field seismic response law of the Wenchuan earthquake in the Loess Plateau is of great significance to prevent the far-field disaster of great earthquake. In this paper, the seismic acceleration records of several bedrock stations and loess stations from the seismogenic fault of the Wenchuan earthquake to the Loess Plateau were collected, and the attenuation law of ground motion along the propagation path and the characteristics of seismic response on the loess site are studied,and the mechanism of amplification effect of ground motion is analyzed based on the dynamic feature parameters of the loess site obtained through the HVSR method. Taking a typical loess site of thick deposit as the prototype, a series of shaking table tests of dynamic response of loess site models with different thicknesses were carried out.Amplification effect, spectral characteristics of acceleration in model sites were analyzed under the action of a farfield seismic wave of the Wenchuan earthquake. The results show that seismic attenuation on the propagation path along the NE strike of the seismogenic fault to the Loess Plateau is slower than that in other directions, and the predominant period range of ground motion on bedrock site of the Loess Plateau presents broadband characteristics. Because the natural periods of loess sites with thick deposits are within the predominant period range of bedrock input wave, loess sites appear significant amplification effect of ground motion, the horizontal acceleration of ground motion exceeds 0.1 g, the seismic intensity reaches 7°. The thicker the loess deposit is, the more significant the change of spectral characteristics of ground motion on loess sites, and the narrower the predominant period range of ground motion becomes, and the closer it is to the natural period of loess sites.Therefore, for some old houses on thick loess sites, the poor seismic performance and strong seismic response eventually led to their collapses and damages because their natural periods are very close to the predominant period of ground motion of the Wenchuan earthquake on thick loess sites;For these damaged high-rise buildings,the resonance effect might be the main reason for their damages because their natural periods are included in the predominant period range of ground motion of the Wenchuan earthquake on thick loess sites.These research results would provide a basis for seismic disasters prediction and evaluation and seismic design of construction engineering in the Loess Plateau. 展开更多
关键词 the Wenchuan earthquake the Loess Plateau dynamic response Amplification effect Shaking table test Disaster mechanism
下载PDF
The Mechanical Environment of the Cells in a Membrane Pressure-tension Compound Loading System:An Experimental and Theoretical Study
19
作者 ZOU Yuan-wen HE Gang +2 位作者 HUANG Xue-jin LI Jin-chuan JIANG Wen-tao 《Chinese Journal of Biomedical Engineering(English Edition)》 2013年第3期111-118,共8页
A quasi-static/dynamic pressure-tension compound loading system was established in this paper for the research of cellular mechanical circumstances. Both radical and circumferential strain of the basement membrane wer... A quasi-static/dynamic pressure-tension compound loading system was established in this paper for the research of cellular mechanical circumstances. Both radical and circumferential strain of the basement membrane were studied and compared in theoretical calculations by using the FEA Software ABAQUS and experimental measurements. The tension of the basement membrane was studied both in ABUQUES results and experimental results, the relation between the height of the concave cavity, the radius of the membrane and the strain of the membrane were studied in details. 展开更多
关键词 COMPOUND loading system cellular MECHANICS static/dynamic PRESSURE CONCAVE cavity BASEMENT MEMBRANE
下载PDF
Quasi-static and dynamical bending of a cantilever poroelastic beam
20
作者 杨怡 李丽 杨骁 《Journal of Shanghai University(English Edition)》 CAS 2009年第3期189-196,共8页
Based on the theory of porous media, the quasi-static and dynamical bending of a cantilever poroelastic beam subjected to a step load at its free end is investigated, and the influences of its permeability on bending ... Based on the theory of porous media, the quasi-static and dynamical bending of a cantilever poroelastic beam subjected to a step load at its free end is investigated, and the influences of its permeability on bending deformation is examined. The initial boundary value problems for dynamical and quasi-static responses are solved with the Laplace transform technique, and the deflections, the bending moments of the solid skeleton and the equivalent couples of the pore fluid pressure are shown in figures. It is shown that the dynamical and quasi-static behavior of the saturated poroelastic beam depends closely on the permeability conditions at the beam ends. Under the different permeability conditions, the deflections of the beam may oscillate or not. The Mandel-Cryer effect also exists in liquid-saturated poroelastic beams. 展开更多
关键词 theory of porous media saturated poroelastic beam dynamical/quasi-static response Laplace transform
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部