We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated...We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.展开更多
Article continues and complements our previous articles on the HM16 ether (ETH) model. Here, we describe the mechanism of occurrence of the submicroparticle (SMP). A general hypothesis, HFVI, is introduced for the mod...Article continues and complements our previous articles on the HM16 ether (ETH) model. Here, we describe the mechanism of occurrence of the submicroparticle (SMP). A general hypothesis, HFVI, is introduced for the modalities of interaction between two SMPs, based on periodic mechanical percussion forces, produced by fundamental vibrations FVs. A mechanism for describing the interaction between a SMPs and the ETH is presented. Positive and negative particles are defined by their membrane types of movement, such as +, <span style="white-space:nowrap;">−</span><em>u</em>/+, <span style="white-space:nowrap;">−</span><em>v</em> vibrations, and rotations at speeds +<span style="white-space:nowrap;">Ω</span>/<span style="white-space:nowrap;">−</span><span style="white-space:nowrap;">Ω</span>. The process of creating a pair of SMPs is discussed. Applying HFVI to the interaction between pairs of SMPs immobile in ETH, and considering longitudinal FVL, was obtained the forces of attraction/repulsion +<em>F</em><sub><em>L</em>21</sub>/–<em>F<sub>L</sub></em><sub>21</sub>, which correspond to the completed Coulomb force<em> F<sub>CC</sub></em> including gravitation. The resultant <em>F</em><sub>RL21</sub> will form an oriented field of forces, which is a quasielectric field <em>QE</em>, equivalent to actual <em>E</em> electric field. Considering transversal FVT, was obtained the vibratory forces +, <span style="white-space:nowrap;">−</span><em>F<sub>T</sub></em><sub>21</sub>, whose resultant forms an vibrating field of forces, <em>QHs</em>, a quasimagnetic special field, which may explain some of the quantum properties of SMPs. Considering a mobile SMP, two new<em> <span style="white-space:nowrap;">γ</span></em> strains in ETH appear. Strains <em><span style="white-space:nowrap;">γ</span><sub>L</sub></em> are created by the displacement of SMP with velocity<em> V</em>, whose force +, <span style="white-space:nowrap;">−</span><em>F<sub>T</sub></em><sub>12</sub> is the support of a component of the magnetic field <em>H</em> (quasimagnetic field <em>QH</em>), giving the <em>QH<sub>L</sub></em> component. Strains <em>γ</em><sub>R</sub> are created by the rotation of SMP with speed <span style="white-space:nowrap;">Ω</span>, whose force +, <span style="white-space:nowrap;">−</span><em>F</em><sub>R12</sub> constitutes physical support of the component <em>QH<sub>R</sub></em> of magnetic field <em>H </em>(<em>i.e. QH)</em><em></em>. The creation of a photon PH is modelled as a special ESMP containing two zones of opposed rotations, and a mechanism is presented for its movement in the ETH with speed <em>c</em> based on the HS hypothesis of screwing in ETH, with frequency <em>ν</em>.展开更多
Charge is a fundamental physical property of matter that is responsible for its interactions with electromagnetic fields. The real nature and the essence of charge are unknown. In this paper, a new theory is presented...Charge is a fundamental physical property of matter that is responsible for its interactions with electromagnetic fields. The real nature and the essence of charge are unknown. In this paper, a new theory is presented to describe the nature and the essence of electric charge is formulated based on the vortex model of the electron which has a finite size and has an irrotational vortex structure. This theory and the vortex model of the electron enables us, for the first time, to describe the origin of bivalency, stability, quantization, equality of the absolute values of the bivalent charges, to derive a simple formulation to calculate the electric charge based on hydrodynamics without the use any constant. The difference between negative and positive charge, is revealed and the charged particles interactions are described. The electric charge is an expression of accelerated spherical mass per area reduced by the stiffness of the vacuum which has the units <i>ε</i><sub>0</sub> ML<sup>3</sup>/T<sup>2</sup>. The calculated results based on these equations comply accurately with the experimental results.展开更多
The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly co...The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly correlated to geodynamo.Here we review a large number of studies on the electrical and thermal conductivity of iron and iron alloys and discuss their implications on the thermal evolution of the Earth’s core.In summary,we suggest that the Wiedemann-Franz law,commonly used to convert the electrical resistivity to thermal conductivity for metals and alloys,should be cautiously applied under extremely high pressure-temperature(P-T)conditions(e.g.,Earth’s core)because the Lorentz number may be P-T dependent.To date,the discrepancy in the thermal conductivity of iron and iron alloys remains between those from the resistivity measurements and the thermal diffusivity modeling,where the former is systematically larger.Recent studies reconcile the electrical resistivity by first-principles calculation and direct measurements,and this is a good start in resolving this discrepancy.Due to an overall higher thermal conductivity than previously thought,the inner core age is presently constrained at~1.0 Ga.However,light elements in the core would likely lower the thermal conductivity and prolong the crystallization of the inner core.Meanwhile,whether thermal convection can power the dynamo before the inner core formation depends on the amounts of the proper light elements in the core.More works are needed to establish the thermal evolution model of the core.展开更多
Questions and difficulties are presented pertaining to the quantitative characterization of the electric field in certain scenarios. Specific examples concerning electrolytes are explored. Newton’s third law is invok...Questions and difficulties are presented pertaining to the quantitative characterization of the electric field in certain scenarios. Specific examples concerning electrolytes are explored. Newton’s third law is invoked and the concept of mobile charge density is presented in relation to free charge density and bound charge density. The notion of mobile charge density is utilized to develop a theory and model for the electric field coupled with electrolytic properties and transport. Validations, simulations, and implications of the model are presented and discussed, including: is it possible to extend Maxwell’s equations to a more generalized form?展开更多
Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (for...Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (formation of negative charge in that case) has long been considered as physical phenomena of very small space-time scales. Now we have good reasons to say that this perception of troposphere electrical status is totally meaningless. Indeed, it is now easy to show that significant numbers of electrons are provided to troposphere at each appearance of a thunderstorm (or a lightning flash). Thereafter, movement implemented in the troposphere by winds (e.g., West African aerojet) contributes to the formation of low altitudes Electrojets (e.g., West African Equatorial Aerojet gives birth to West African Equatorial Electrojet). The existence of Low Layers Equatorial Electrojets (LL-EEJ) was totally unknown by the first theorists who have studied the Earth’s Ionosphere Plasma Physics and Electrodynamics. This mistake has led their followers to many questions unanswered in their attempt to explain the longitudinal and seasonal variations of observed EEJ. In this paper, we will provide many useful explanations on the manner in which clouds provide oxygen to troposphere and thereafter trigger negative static charges (e-) throughout both troposphere and ionosphere. Indeed, this paper also explains how, opportunely, the ITF (inter tropical front) plays the role of the tap which facilitates oxygen transfer from troposphere to ionosphere. Detailed studies on the Earth’s troposphere plasma physics and electrodynamics are impatiently awaited.展开更多
The previously introduced US of units has raised many comments. Such comments were the claims of how to measure the electric current and magnetic flux. Other comments were concerned by violating the fundamental laws o...The previously introduced US of units has raised many comments. Such comments were the claims of how to measure the electric current and magnetic flux. Other comments were concerned by violating the fundamental laws of electro-magnetism. Such violation is not the concern of the introduced system of units. But it is related to the previous mess in the available SI system of units.展开更多
Localized surface plasmon resonance(LSPR)of nanostructures and the interfacial charge transfer(CT)of semiconductor materials play essential roles in the study of optical and photoelectronic properties.In this paper,a ...Localized surface plasmon resonance(LSPR)of nanostructures and the interfacial charge transfer(CT)of semiconductor materials play essential roles in the study of optical and photoelectronic properties.In this paper,a composite substrate of Ag2S quantum dots(QDs)coated plasmonic Au bowtie nanoantenna(BNA)arrays with a metalinsulator-metal(MIM)configuration was built to study the synergistic effect of LSPR and interfacial CT using surface-enhanced Raman scattering(SERS)in the near-infrared(NIR)region.The Au BNA array structure with a large enhancement of the localized electric field(E-field)strongly enhanced the Raman signal of adsorbed p-aminothiophenol(PATP)probe molecules.Meanwhile,the broad enhanced spectral region was achieved owing to the coupling of LSPR The as-prepared Au BNA array structure facilitated enhancements of the excitation as well as the emission of Raman signal simultaneously,which was established by finite-difference time-domain simulation.Moreover,Ag2S semiconductor QDs were introduced into the BNA/PATP system to further enhance Raman signals,which benefited from the interfacial CT resonance in the BNA/Ag2S-QDs/PATP system.As a result,the Raman signals of PATP in the BNA/Ag2S-QDs/PATP system were strongly enhanced under 785 nm laser excitation due to the synergistic effect of E-field enhancement and interfacial CT.Furthermore,the SERS polarization dependence effeas of the BNA/Ag2S-QDs/PATP system were also investigated.The SERS spectra indicated that the polarization dependence of the substrate increased with decreasing polarization angles(θpola)of excitation from p-polarized(θpola=90°)excitation to s-polarized(θpola=0°)excitation.This study provides a strategy using the synergistic effect of interfacial CT and E-field enhancement for SERS applications and provides a guidance for the development of SERS study on semiconductor QD-based plasmonic substrates,and can be farther extended to other material-nanostructure systems for various optoelectronic and sensing applications.展开更多
The term neurodegeneration emphasizes the destruction of neuronal cells as the primary explanation of many major neurological illnesses, including Alzheimer’s disease. Specialized functioning of cells requires more c...The term neurodegeneration emphasizes the destruction of neuronal cells as the primary explanation of many major neurological illnesses, including Alzheimer’s disease. Specialized functioning of cells requires more cellular energy than is needed for basic cell survival. Cells can acquire energy both from the metabolism of food and from the alternative cellular energy (ACE) pathway. The ACE pathway is an added dynamic (kinetic) quality of the body’s fluids occurring from the absorption of an external force termed KELEA (Kinetic Energy Limiting Electrostatic Attraction). KELEA is attracted to separated electrical charges and is seemingly partially released as the charges become more closely linked. As suggested elsewhere, the fluctuating electrical activity in the brain may attract KELEA from the environment and, thereby, contribute to the body’s ACE pathway. Certain illnesses affecting the brain may impede this proposed antenna function of the brain, leading to a systemic insufficiency of cellular energy (ICE). Furthermore, individual neurons may derive some of the energy for their own activities from the repetitive depolarization of the cell. This may explain why hyper-excitability of neurons can occur in response to cell damage. This adaptive mechanism is unlikely to be sustainable, however, especially if there is a continuing need to synthesize neurotransmitters and membrane ion channels. The energy deficient neurons would then become quiescent and, although remaining viable, would not perform their intended specialized functions. Actual cell death would not necessarily occur till much later in the disease process. The distinction between quiescent and degenerated cells is important since the ACE pathway can be enhanced by several means, including the regular consumption of KELEA activated water. This, in turn, may improve the proposed antenna function of individual neurons, leading to a sustained restoration of specialized function via the ACE pathway. This paper explores this novel concept and provides a rationale for clinical testing of KELEA activated water in patients with neurological and psychiatric illnesses, including Alzheimer’s disease.展开更多
5G技术发展使用户能够通过车联网和V2X(vehicle to everything)技术快速获取周围物理环境的信息。车辆、电网运营商等也能根据路网信息进行更好的资源分配与调度,从而促进现代化智慧交通、智慧城市等发展战略的实现。考虑到现代化城市...5G技术发展使用户能够通过车联网和V2X(vehicle to everything)技术快速获取周围物理环境的信息。车辆、电网运营商等也能根据路网信息进行更好的资源分配与调度,从而促进现代化智慧交通、智慧城市等发展战略的实现。考虑到现代化城市不同区域承担着不同功能,在车辆停靠、电网容量、土地约束、成本价格等方面具有不同特征,为优化充电站部署,建立了V2X辅助下城市区域特征差异充电站模型。考虑实际情况,引入M/M/S/K排队模型和用户充电决策模型对用户行为进行刻画。进一步建立优化模型,在用地面积、电网容量以及服务需求的约束下,通过充电站点选择和充电桩部署,最大化运营商收益。为求解该问题,设计了一种基于站点容量和用户充电行为的充电站网络规划方法,首先求解给定站点的最优充电桩部署数目,然后对候选站点进行筛选聚合实现充电站网络优化。仿真验证了所提优化方法的有效性,所提充电站网络优化方法能够有效提高站点内充电桩利用率,减少运营商建设成本,提升运营商整体盈利。展开更多
文摘We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.
文摘Article continues and complements our previous articles on the HM16 ether (ETH) model. Here, we describe the mechanism of occurrence of the submicroparticle (SMP). A general hypothesis, HFVI, is introduced for the modalities of interaction between two SMPs, based on periodic mechanical percussion forces, produced by fundamental vibrations FVs. A mechanism for describing the interaction between a SMPs and the ETH is presented. Positive and negative particles are defined by their membrane types of movement, such as +, <span style="white-space:nowrap;">−</span><em>u</em>/+, <span style="white-space:nowrap;">−</span><em>v</em> vibrations, and rotations at speeds +<span style="white-space:nowrap;">Ω</span>/<span style="white-space:nowrap;">−</span><span style="white-space:nowrap;">Ω</span>. The process of creating a pair of SMPs is discussed. Applying HFVI to the interaction between pairs of SMPs immobile in ETH, and considering longitudinal FVL, was obtained the forces of attraction/repulsion +<em>F</em><sub><em>L</em>21</sub>/–<em>F<sub>L</sub></em><sub>21</sub>, which correspond to the completed Coulomb force<em> F<sub>CC</sub></em> including gravitation. The resultant <em>F</em><sub>RL21</sub> will form an oriented field of forces, which is a quasielectric field <em>QE</em>, equivalent to actual <em>E</em> electric field. Considering transversal FVT, was obtained the vibratory forces +, <span style="white-space:nowrap;">−</span><em>F<sub>T</sub></em><sub>21</sub>, whose resultant forms an vibrating field of forces, <em>QHs</em>, a quasimagnetic special field, which may explain some of the quantum properties of SMPs. Considering a mobile SMP, two new<em> <span style="white-space:nowrap;">γ</span></em> strains in ETH appear. Strains <em><span style="white-space:nowrap;">γ</span><sub>L</sub></em> are created by the displacement of SMP with velocity<em> V</em>, whose force +, <span style="white-space:nowrap;">−</span><em>F<sub>T</sub></em><sub>12</sub> is the support of a component of the magnetic field <em>H</em> (quasimagnetic field <em>QH</em>), giving the <em>QH<sub>L</sub></em> component. Strains <em>γ</em><sub>R</sub> are created by the rotation of SMP with speed <span style="white-space:nowrap;">Ω</span>, whose force +, <span style="white-space:nowrap;">−</span><em>F</em><sub>R12</sub> constitutes physical support of the component <em>QH<sub>R</sub></em> of magnetic field <em>H </em>(<em>i.e. QH)</em><em></em>. The creation of a photon PH is modelled as a special ESMP containing two zones of opposed rotations, and a mechanism is presented for its movement in the ETH with speed <em>c</em> based on the HS hypothesis of screwing in ETH, with frequency <em>ν</em>.
文摘Charge is a fundamental physical property of matter that is responsible for its interactions with electromagnetic fields. The real nature and the essence of charge are unknown. In this paper, a new theory is presented to describe the nature and the essence of electric charge is formulated based on the vortex model of the electron which has a finite size and has an irrotational vortex structure. This theory and the vortex model of the electron enables us, for the first time, to describe the origin of bivalency, stability, quantization, equality of the absolute values of the bivalent charges, to derive a simple formulation to calculate the electric charge based on hydrodynamics without the use any constant. The difference between negative and positive charge, is revealed and the charged particles interactions are described. The electric charge is an expression of accelerated spherical mass per area reduced by the stiffness of the vacuum which has the units <i>ε</i><sub>0</sub> ML<sup>3</sup>/T<sup>2</sup>. The calculated results based on these equations comply accurately with the experimental results.
基金financial support from the National Natural Science Foundation of China(Grant Nos.41804082 and 41873073)the Special Research Assistant Funding Program provided by the Chinese Academy of Sciences。
文摘The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly correlated to geodynamo.Here we review a large number of studies on the electrical and thermal conductivity of iron and iron alloys and discuss their implications on the thermal evolution of the Earth’s core.In summary,we suggest that the Wiedemann-Franz law,commonly used to convert the electrical resistivity to thermal conductivity for metals and alloys,should be cautiously applied under extremely high pressure-temperature(P-T)conditions(e.g.,Earth’s core)because the Lorentz number may be P-T dependent.To date,the discrepancy in the thermal conductivity of iron and iron alloys remains between those from the resistivity measurements and the thermal diffusivity modeling,where the former is systematically larger.Recent studies reconcile the electrical resistivity by first-principles calculation and direct measurements,and this is a good start in resolving this discrepancy.Due to an overall higher thermal conductivity than previously thought,the inner core age is presently constrained at~1.0 Ga.However,light elements in the core would likely lower the thermal conductivity and prolong the crystallization of the inner core.Meanwhile,whether thermal convection can power the dynamo before the inner core formation depends on the amounts of the proper light elements in the core.More works are needed to establish the thermal evolution model of the core.
文摘Questions and difficulties are presented pertaining to the quantitative characterization of the electric field in certain scenarios. Specific examples concerning electrolytes are explored. Newton’s third law is invoked and the concept of mobile charge density is presented in relation to free charge density and bound charge density. The notion of mobile charge density is utilized to develop a theory and model for the electric field coupled with electrolytic properties and transport. Validations, simulations, and implications of the model are presented and discussed, including: is it possible to extend Maxwell’s equations to a more generalized form?
文摘Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (formation of negative charge in that case) has long been considered as physical phenomena of very small space-time scales. Now we have good reasons to say that this perception of troposphere electrical status is totally meaningless. Indeed, it is now easy to show that significant numbers of electrons are provided to troposphere at each appearance of a thunderstorm (or a lightning flash). Thereafter, movement implemented in the troposphere by winds (e.g., West African aerojet) contributes to the formation of low altitudes Electrojets (e.g., West African Equatorial Aerojet gives birth to West African Equatorial Electrojet). The existence of Low Layers Equatorial Electrojets (LL-EEJ) was totally unknown by the first theorists who have studied the Earth’s Ionosphere Plasma Physics and Electrodynamics. This mistake has led their followers to many questions unanswered in their attempt to explain the longitudinal and seasonal variations of observed EEJ. In this paper, we will provide many useful explanations on the manner in which clouds provide oxygen to troposphere and thereafter trigger negative static charges (e-) throughout both troposphere and ionosphere. Indeed, this paper also explains how, opportunely, the ITF (inter tropical front) plays the role of the tap which facilitates oxygen transfer from troposphere to ionosphere. Detailed studies on the Earth’s troposphere plasma physics and electrodynamics are impatiently awaited.
文摘The previously introduced US of units has raised many comments. Such comments were the claims of how to measure the electric current and magnetic flux. Other comments were concerned by violating the fundamental laws of electro-magnetism. Such violation is not the concern of the introduced system of units. But it is related to the previous mess in the available SI system of units.
基金Chinese Academy of Sciences(QYZDB-SSWSYS038)National Natural Science Foundation of China(11674178,11774340,91750205,61705227)+1 种基金K.C.Wong Education Foundation(GJTD-2018-08)Jilin Provincial Science&Technology Development Project(20180414019GH)。
文摘Localized surface plasmon resonance(LSPR)of nanostructures and the interfacial charge transfer(CT)of semiconductor materials play essential roles in the study of optical and photoelectronic properties.In this paper,a composite substrate of Ag2S quantum dots(QDs)coated plasmonic Au bowtie nanoantenna(BNA)arrays with a metalinsulator-metal(MIM)configuration was built to study the synergistic effect of LSPR and interfacial CT using surface-enhanced Raman scattering(SERS)in the near-infrared(NIR)region.The Au BNA array structure with a large enhancement of the localized electric field(E-field)strongly enhanced the Raman signal of adsorbed p-aminothiophenol(PATP)probe molecules.Meanwhile,the broad enhanced spectral region was achieved owing to the coupling of LSPR The as-prepared Au BNA array structure facilitated enhancements of the excitation as well as the emission of Raman signal simultaneously,which was established by finite-difference time-domain simulation.Moreover,Ag2S semiconductor QDs were introduced into the BNA/PATP system to further enhance Raman signals,which benefited from the interfacial CT resonance in the BNA/Ag2S-QDs/PATP system.As a result,the Raman signals of PATP in the BNA/Ag2S-QDs/PATP system were strongly enhanced under 785 nm laser excitation due to the synergistic effect of E-field enhancement and interfacial CT.Furthermore,the SERS polarization dependence effeas of the BNA/Ag2S-QDs/PATP system were also investigated.The SERS spectra indicated that the polarization dependence of the substrate increased with decreasing polarization angles(θpola)of excitation from p-polarized(θpola=90°)excitation to s-polarized(θpola=0°)excitation.This study provides a strategy using the synergistic effect of interfacial CT and E-field enhancement for SERS applications and provides a guidance for the development of SERS study on semiconductor QD-based plasmonic substrates,and can be farther extended to other material-nanostructure systems for various optoelectronic and sensing applications.
文摘The term neurodegeneration emphasizes the destruction of neuronal cells as the primary explanation of many major neurological illnesses, including Alzheimer’s disease. Specialized functioning of cells requires more cellular energy than is needed for basic cell survival. Cells can acquire energy both from the metabolism of food and from the alternative cellular energy (ACE) pathway. The ACE pathway is an added dynamic (kinetic) quality of the body’s fluids occurring from the absorption of an external force termed KELEA (Kinetic Energy Limiting Electrostatic Attraction). KELEA is attracted to separated electrical charges and is seemingly partially released as the charges become more closely linked. As suggested elsewhere, the fluctuating electrical activity in the brain may attract KELEA from the environment and, thereby, contribute to the body’s ACE pathway. Certain illnesses affecting the brain may impede this proposed antenna function of the brain, leading to a systemic insufficiency of cellular energy (ICE). Furthermore, individual neurons may derive some of the energy for their own activities from the repetitive depolarization of the cell. This may explain why hyper-excitability of neurons can occur in response to cell damage. This adaptive mechanism is unlikely to be sustainable, however, especially if there is a continuing need to synthesize neurotransmitters and membrane ion channels. The energy deficient neurons would then become quiescent and, although remaining viable, would not perform their intended specialized functions. Actual cell death would not necessarily occur till much later in the disease process. The distinction between quiescent and degenerated cells is important since the ACE pathway can be enhanced by several means, including the regular consumption of KELEA activated water. This, in turn, may improve the proposed antenna function of individual neurons, leading to a sustained restoration of specialized function via the ACE pathway. This paper explores this novel concept and provides a rationale for clinical testing of KELEA activated water in patients with neurological and psychiatric illnesses, including Alzheimer’s disease.
文摘5G技术发展使用户能够通过车联网和V2X(vehicle to everything)技术快速获取周围物理环境的信息。车辆、电网运营商等也能根据路网信息进行更好的资源分配与调度,从而促进现代化智慧交通、智慧城市等发展战略的实现。考虑到现代化城市不同区域承担着不同功能,在车辆停靠、电网容量、土地约束、成本价格等方面具有不同特征,为优化充电站部署,建立了V2X辅助下城市区域特征差异充电站模型。考虑实际情况,引入M/M/S/K排队模型和用户充电决策模型对用户行为进行刻画。进一步建立优化模型,在用地面积、电网容量以及服务需求的约束下,通过充电站点选择和充电桩部署,最大化运营商收益。为求解该问题,设计了一种基于站点容量和用户充电行为的充电站网络规划方法,首先求解给定站点的最优充电桩部署数目,然后对候选站点进行筛选聚合实现充电站网络优化。仿真验证了所提优化方法的有效性,所提充电站网络优化方法能够有效提高站点内充电桩利用率,减少运营商建设成本,提升运营商整体盈利。