A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method u...A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method used for this problem usually evaluates the material properties only by its final strength. But the classical finite element method(FEM) does not necessarily provide a clear collapse mechanism associated with the yield condition of elements. To overcome these defects, a numerical procedure is proposed to create an explicit collapse mode combining a modified smeared shear band approach with a modified initial stress method. To understand the practical performance of sand foundation and verify the performance of the proposed procedure applied to the practical problems, the computing results were compared with the laboratory model tests results and some conventional solutions. Furthermore, because the proposed numerical procedure employs a simple elasto-plastic model which requires a small number of soil parameters, it may be applied directly to practical design works.展开更多
This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the...This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the expandable device could have much higher strength(>89 MPa)by laboratory tests,and the load bearing capacity of the expandable prop may depend on the stability of the supporting steel pipe structure.A good agreement was found between the laboratory test and numerical results in terms of the load bearing capacity and the final macro-bending failure pattern for expandable props with heights of 1.5 and 2.7 m,and the theoretical calculation for the strength of traditional steel structures is not directly suitable for the expandable props.Moreover,additional numerical simulations were performed for the expandable props with different normalized slenderness ratiosλ_(n)and loading eccentric distances e.The variation of stability coefficient of the expandable prop is in line with the Perry-Robertson equation and its correlation coefficients are fitted as a of 0.979 and b of 0.314.For estimating the load bearing capacity of the expandable props,the strength equation for traditional steel structures is improved by introducing a bending magnification factor and by modifying the normalized slenderness ratio to a converted slenderness ratio.Based on the underground field monitoring for the strength of expandable props with different heights,the empirical eccentric distances were back calculated,and a safety factor is introduced to obtain the designed strength of the expandable prop.In addition,a four-step design procedure is proposed for the expandable prop.展开更多
The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equa...The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equations in Technical Specification for Latticed Shells. Based on the von Mises yield criterion, multilinear isotropic hardening rule and associated flow rule, the elasto-plastic finite element model is put forward to analyze the behavior of the joints, and a calculation method for the joints under bending moments or eccentric loads is proposed. It is shown by the analytical results of joint that the stiffening rib can improve the ultimate bearing capacity by 10% for joints under axial tensile load, by 40% for joints under axial compressive load, and by 50% for joints under bending moment. The unified calculation equations for joints with or without stiffening rib are put forward, which can be applied to calculating the ultimate bearing capacity of the hollow spherical joints with circular pipes under eccentric loads.展开更多
In this paper, an experimental study for an eccentrically loaded circular footing, resting on a geogridreinforced sand bed, is performed. To achieve this aim, the steel model footing of 120 mm in diameterand sand in r...In this paper, an experimental study for an eccentrically loaded circular footing, resting on a geogridreinforced sand bed, is performed. To achieve this aim, the steel model footing of 120 mm in diameterand sand in relative density of 60% are used. Also, the effects of depth of first and second geogrid layersand number of reinforcement layers (1e4) on the settlement-load response and tilt of footing undervarious load eccentricities (0 cm, 0.75 cm, 1.5 cm, 2.25 cm and 3 cm) are investigated. Test results indicatethat ultimate bearing capacity increases in comparison with unreinforced condition. It is observed thatwhen the reinforcements are placed in the optimum embedment depth (u/D ?0.42 and h/D ?0.42), thebearing capacity ratio (BCR) increases with increasing load eccentricity to the core boundary of footing,and that with further increase of load eccentricity, the BCR decreases. Besides, the tilt of footing increaseslinearly with increasing settlement. Finally, by reinforcing the sand bed, the tilt of footing decreases at 2layers of reinforcement and then increases by increasing the number of reinforcement layers.展开更多
基金Projects(cstc2012jjA0510,cstc2013jcyjA30014)supported by Chongqing Natural Science Foundation in ChinaProject(CDJZR12200011)supported by the Fundamental Research Funds for the Central Universities in China+1 种基金Project(KJTD201305)supported by the Innovation Team Building Programs of Chongqing Universities in ChinaProject supported by the Scientific Research Foundation for the Returned Oversea Chinese Scholars
文摘A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method used for this problem usually evaluates the material properties only by its final strength. But the classical finite element method(FEM) does not necessarily provide a clear collapse mechanism associated with the yield condition of elements. To overcome these defects, a numerical procedure is proposed to create an explicit collapse mode combining a modified smeared shear band approach with a modified initial stress method. To understand the practical performance of sand foundation and verify the performance of the proposed procedure applied to the practical problems, the computing results were compared with the laboratory model tests results and some conventional solutions. Furthermore, because the proposed numerical procedure employs a simple elasto-plastic model which requires a small number of soil parameters, it may be applied directly to practical design works.
基金This work was financially supported by the National Key Research and Development Program of China(No.2022YFC2903804)the National Natural Science Foundation of China(Nos.52004054,52274115,51874068 and 52074062).
文摘This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the expandable device could have much higher strength(>89 MPa)by laboratory tests,and the load bearing capacity of the expandable prop may depend on the stability of the supporting steel pipe structure.A good agreement was found between the laboratory test and numerical results in terms of the load bearing capacity and the final macro-bending failure pattern for expandable props with heights of 1.5 and 2.7 m,and the theoretical calculation for the strength of traditional steel structures is not directly suitable for the expandable props.Moreover,additional numerical simulations were performed for the expandable props with different normalized slenderness ratiosλ_(n)and loading eccentric distances e.The variation of stability coefficient of the expandable prop is in line with the Perry-Robertson equation and its correlation coefficients are fitted as a of 0.979 and b of 0.314.For estimating the load bearing capacity of the expandable props,the strength equation for traditional steel structures is improved by introducing a bending magnification factor and by modifying the normalized slenderness ratio to a converted slenderness ratio.Based on the underground field monitoring for the strength of expandable props with different heights,the empirical eccentric distances were back calculated,and a safety factor is introduced to obtain the designed strength of the expandable prop.In addition,a four-step design procedure is proposed for the expandable prop.
基金National Natural Science Foundation of China (No 50608054)
文摘The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equations in Technical Specification for Latticed Shells. Based on the von Mises yield criterion, multilinear isotropic hardening rule and associated flow rule, the elasto-plastic finite element model is put forward to analyze the behavior of the joints, and a calculation method for the joints under bending moments or eccentric loads is proposed. It is shown by the analytical results of joint that the stiffening rib can improve the ultimate bearing capacity by 10% for joints under axial tensile load, by 40% for joints under axial compressive load, and by 50% for joints under bending moment. The unified calculation equations for joints with or without stiffening rib are put forward, which can be applied to calculating the ultimate bearing capacity of the hollow spherical joints with circular pipes under eccentric loads.
文摘In this paper, an experimental study for an eccentrically loaded circular footing, resting on a geogridreinforced sand bed, is performed. To achieve this aim, the steel model footing of 120 mm in diameterand sand in relative density of 60% are used. Also, the effects of depth of first and second geogrid layersand number of reinforcement layers (1e4) on the settlement-load response and tilt of footing undervarious load eccentricities (0 cm, 0.75 cm, 1.5 cm, 2.25 cm and 3 cm) are investigated. Test results indicatethat ultimate bearing capacity increases in comparison with unreinforced condition. It is observed thatwhen the reinforcements are placed in the optimum embedment depth (u/D ?0.42 and h/D ?0.42), thebearing capacity ratio (BCR) increases with increasing load eccentricity to the core boundary of footing,and that with further increase of load eccentricity, the BCR decreases. Besides, the tilt of footing increaseslinearly with increasing settlement. Finally, by reinforcing the sand bed, the tilt of footing decreases at 2layers of reinforcement and then increases by increasing the number of reinforcement layers.