Anxiety is a significant mental health issue that substantially affects an individual’s quality of life. Feelings of uneasiness, irritability, and sleep disturbances characterize it. 4-Hydroxyphenyl acetic acid (4-HP...Anxiety is a significant mental health issue that substantially affects an individual’s quality of life. Feelings of uneasiness, irritability, and sleep disturbances characterize it. 4-Hydroxyphenyl acetic acid (4-HPAA) is identified in brain cells as a physiological byproduct of tyramine. This study hypothesizes that 4-HPAA may regulate anxiety due to its anxiolytic properties, acting as a modulator of the GABAergic system, which plays a crucial role in the pathophysiology of anxiety disorders. Our study aims to enhance the anxiolytic effects of 4-HPAA through chemical modification to improve its pharmacokinetic properties. Three derivatives, namely Isopropyl-4-hydroxy-[phenyl] acetate (IHPA), Isopropyl-4-hydroxy-[phenyl] acetate (MPAA), and 4-methoxyphenyl acetate (MPHA), have been synthesized from 4-HPAA. This assessment will use well-established animal models, specifically the Elevated Plus-Maze (EPM) and Zero Maze (EZM) tests, selected for their validity in replicating anxiety-like symptoms in animals. Chronic caffeine administration via drinking water (0.3 g/l for 14 days) was employed to induce an anxiety state for testing purposes. IHPA and MPAA demonstrated significant anxiolyticactivity when tested in the EPM and EZM experiments. Molecular docking simulations using AutoDock Vina indicated that 4-HPAA derivatives had docking scores ranging from −5.8 to −4.8 kcal/mol, compared to the standard anxiolytic medication Diazepam, which scored −7.1 kcal/mol. These scores suggest a potential for 4-HPAA derivatives to interact effectively with the Gamma-aminobutyric acid (GABA_A) receptor. In conclusion, our in vivo and in silico analyses indicate a promising anxiolytic potential for 4-HPAA derivatives.展开更多
This brief review discusses the behavioral consequences of two pharmacologically selected lines of rats. Flinders Sensitive (FSL) and Flinders Resistant (FRL) Lines of rats were selected on the basis of differential h...This brief review discusses the behavioral consequences of two pharmacologically selected lines of rats. Flinders Sensitive (FSL) and Flinders Resistant (FRL) Lines of rats were selected on the basis of differential hypothermic and behavioral responses to the anticholinesterase, diisopropylfluorophosphate (DFP). FSL rats are more sensitive to the hypothermic effects of cholinergic, serotonergic, and dopaminergic agonists but less sensitive to the locomotor or stereotypic effects of dopamine agonists. FSL rats exhibit greater immobility in the forced swim test and reduced social interaction compared with FRL rats, but do not differ in saccharin intake, behavior in the elevated plus maze, or responses for rewarding brain self-stimulation. The exaggerated immobility and reduced social interaction are counteracted by chronic treatment with antidepressants. Because FSL rats were more sensitive to 5-HT1A receptor agonists, high (HDS) and low (LDS) 8-OH-DPATsensitive lines were selectively bred for differential hypothermic responses to the 5-HT1A receptor agonist, 8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT). HDS rats were also more sensitive to the hypothermic effects of oxotremorine, a cholinergic agonist, but selection for this response did not diverge with later selection. HDS rats exhibited greater immobility in the forced swim test than LDS rats and this correlated response could be seen early in selection (generation 3). HDS rats also showed reduced social interaction compared to LDS rats, but did not differ in behavior in the elevated plus maze. These findings confirm that selection for hypothermic responses to pharmacological agents do have behavioral consequences, notably the production of depressive-like phenotypes, which can be counteracted by chronic antidepressant treatment. Because increased 5-HT1A receptor sensitivity was common to both selected lines (FSL and HDS), neurobiological processes dependent on this receptor could contribute to the abnormal behaviors that manifest in these rat lines and thus suggesting a mechanism underlying depressive behaviors in humans. However, available human data are inconsistent with this hypothesis and suggest that other mechanisms underlie these behavioral abnormalities in HDS and FSL rats. These mechanisms as well as additional behavioral testing in these rat lines will be discussed.展开更多
文摘Anxiety is a significant mental health issue that substantially affects an individual’s quality of life. Feelings of uneasiness, irritability, and sleep disturbances characterize it. 4-Hydroxyphenyl acetic acid (4-HPAA) is identified in brain cells as a physiological byproduct of tyramine. This study hypothesizes that 4-HPAA may regulate anxiety due to its anxiolytic properties, acting as a modulator of the GABAergic system, which plays a crucial role in the pathophysiology of anxiety disorders. Our study aims to enhance the anxiolytic effects of 4-HPAA through chemical modification to improve its pharmacokinetic properties. Three derivatives, namely Isopropyl-4-hydroxy-[phenyl] acetate (IHPA), Isopropyl-4-hydroxy-[phenyl] acetate (MPAA), and 4-methoxyphenyl acetate (MPHA), have been synthesized from 4-HPAA. This assessment will use well-established animal models, specifically the Elevated Plus-Maze (EPM) and Zero Maze (EZM) tests, selected for their validity in replicating anxiety-like symptoms in animals. Chronic caffeine administration via drinking water (0.3 g/l for 14 days) was employed to induce an anxiety state for testing purposes. IHPA and MPAA demonstrated significant anxiolyticactivity when tested in the EPM and EZM experiments. Molecular docking simulations using AutoDock Vina indicated that 4-HPAA derivatives had docking scores ranging from −5.8 to −4.8 kcal/mol, compared to the standard anxiolytic medication Diazepam, which scored −7.1 kcal/mol. These scores suggest a potential for 4-HPAA derivatives to interact effectively with the Gamma-aminobutyric acid (GABA_A) receptor. In conclusion, our in vivo and in silico analyses indicate a promising anxiolytic potential for 4-HPAA derivatives.
文摘This brief review discusses the behavioral consequences of two pharmacologically selected lines of rats. Flinders Sensitive (FSL) and Flinders Resistant (FRL) Lines of rats were selected on the basis of differential hypothermic and behavioral responses to the anticholinesterase, diisopropylfluorophosphate (DFP). FSL rats are more sensitive to the hypothermic effects of cholinergic, serotonergic, and dopaminergic agonists but less sensitive to the locomotor or stereotypic effects of dopamine agonists. FSL rats exhibit greater immobility in the forced swim test and reduced social interaction compared with FRL rats, but do not differ in saccharin intake, behavior in the elevated plus maze, or responses for rewarding brain self-stimulation. The exaggerated immobility and reduced social interaction are counteracted by chronic treatment with antidepressants. Because FSL rats were more sensitive to 5-HT1A receptor agonists, high (HDS) and low (LDS) 8-OH-DPATsensitive lines were selectively bred for differential hypothermic responses to the 5-HT1A receptor agonist, 8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT). HDS rats were also more sensitive to the hypothermic effects of oxotremorine, a cholinergic agonist, but selection for this response did not diverge with later selection. HDS rats exhibited greater immobility in the forced swim test than LDS rats and this correlated response could be seen early in selection (generation 3). HDS rats also showed reduced social interaction compared to LDS rats, but did not differ in behavior in the elevated plus maze. These findings confirm that selection for hypothermic responses to pharmacological agents do have behavioral consequences, notably the production of depressive-like phenotypes, which can be counteracted by chronic antidepressant treatment. Because increased 5-HT1A receptor sensitivity was common to both selected lines (FSL and HDS), neurobiological processes dependent on this receptor could contribute to the abnormal behaviors that manifest in these rat lines and thus suggesting a mechanism underlying depressive behaviors in humans. However, available human data are inconsistent with this hypothesis and suggest that other mechanisms underlie these behavioral abnormalities in HDS and FSL rats. These mechanisms as well as additional behavioral testing in these rat lines will be discussed.