In order to prevent and control the water inflow of mines, this paper built a new initial GM(1, 1) model to torecast the maximum water inflow according to the principle of new information. The effect of the new init...In order to prevent and control the water inflow of mines, this paper built a new initial GM(1, 1) model to torecast the maximum water inflow according to the principle of new information. The effect of the new initial GM(1, 1) model is not ideal by the concrete example. Then according to the principle of making the sum of the squares of the difference between the calculated sequences and the original sequences, an optimized GM(1, I) model was established. The result shows that this method is a new prediction method which can predict the maximum water inflow accurately. It not only conforms to the guide- line of prevention primarily, but also provides reference standards to managers on making prevention measures.展开更多
The acute toxic effects of ammonium sulphate to fresh-water catfish, Heteropneustes fossilis (H.fossilis) have been studied by determining LC50 values with 95% confidence limits, by the graphic method, the logistic me...The acute toxic effects of ammonium sulphate to fresh-water catfish, Heteropneustes fossilis (H.fossilis) have been studied by determining LC50 values with 95% confidence limits, by the graphic method, the logistic method, the Spearman and Karber method and the trimmed Spearman-Karber method. The trimmed Spearman-Karber method was found the most ideal for ammonium salt toxicity test. The flaws in the trimmed Spearman-Karber method are also discussed.展开更多
[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasi...[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasis in the next15 years were calculated according to water-soil balance. [Result] When the runoff of Hotan River is at a probability of 50%(P=50 for short), the total water resource is 50.57×10^8m^3, and there is only 33.13×10^8m^3available for social and economics,but there would be a need of 33.44×10^8and 36.06×10^8m^3, and the water shortage would be 1.31 ×10^8and 2.93 ×10^8m^3in 2020 and 2030 respectively. When P =75,the total water resource is 44.30×10^8m^3, there is only 29.39×10^8m^3water available for social and economics. However, there would be a need of 31.43 ×10^8and33.11×10^8m^3, and the water shortage would be 2.04×10^8and 3.72×10^8m^3in 2020 and 2030, respectively. [Conclusion] The problem of water shortage would be serious over the next 15 years, and the fragile ecosystem would be destroyed dramatically with the large-scale land reclamation against natural laws. Hence, the effective policies and measures should be taken timely to prohibit reclamation and to cope with ongoing water shortage, based on the water supply and demand estimation under the background of climate change.展开更多
Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alter...Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alternative for numerical simulations.The common approach in other research shows average damage spots per mesh estimated statistically independent to one another.Spatially distributed lifeline systems,such as water supply pipelines,are interconnected,and seismic spatial variability affects the damages across the region;thus,spatial correlation of damage spots is an important factor in target areas for portfolio loss estimation.Generally,simulations are used to estimate possible losses;however,these assume each damage behaves independently and uncorrelated.This paper assumed that damages per mesh behave in a Poisson distribution to avoid over-dispersion and eliminate negative losses in estimations.The purpose of this study is to obtain a probabilistic portfolio loss model of an extensive water supply area.The proposed model was compared to the numerical simulation data with the correlated Poisson distribution.The application of the Normal To Anything(NORTA)obtained correlations for Poisson Distributions.The proposed probabilistic portfolio loss model,based on the generalized linear model and central limit theory,estimated the possible losses,such as the Probable Maximum Loss(PML,90%non-exceedance)or Normal Expected Loss(NEL,50%non-exceedance).The proposed model can be used in other lifeline systems as well,though additional investigation is needed for confirmation.From the estimations,a seismic physical portfolio loss for the water supply system was presented.The portfolio was made to show possible outcomes for the system.The proposed method was tested and analyzed using an artificial field and a location-based scenario of a water supply pipeline system.This would aid in pre-disaster planning and would require only a few steps and time.展开更多
GMS-5 satellite data at channels of infrared split windows and water vapor are analyzed to retrieve the precipitable water (PW) distributions under cloud-free conditions. Radiosonde data and surface station data are a...GMS-5 satellite data at channels of infrared split windows and water vapor are analyzed to retrieve the precipitable water (PW) distributions under cloud-free conditions. Radiosonde data and surface station data are applied to estimate the PW distributions under cloudy conditions. These two methods are then merged to obtain the PW distributions under all-weather conditions during the Huaihe River Basin Energy and Water Cycle Experiment (HUBEX). The results of the all-weather PW distributions from these methods demonstrate that this new merging technique may be applied to derive large-scale or global maps of PW. It is revealed that the atmospheric water vapor over the Yangtze-Huaihe River Basins came mainly from the southwest during the 1998 prevailing period of Meiyu. Sufficient atmospheric PW is a necessary condition for ground rainfall. Under certain dynamic conditions, it can be partially transformed into surface precipitation. Several types of rain are displayed and their PW conditions and characteristics, as well as atmospheric dynamic conditions, are analyzed. It is demonstrated that surface precipitation centers usually appear not at the high PW centers but on their downwind sides.展开更多
The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Gl...The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Global Positioning System (GPS) has become available, which can routinely achieve accuracies for integrated WV content of 1-2 kg/m2. Some experimental work has shown that the accuracy of WV measurements from a moving platform is comparable to that of (static) land-based receivers. Extending this technique into the marine environment on a moving platform would be greatly beneficial for many aspects of meteorological research, such as the calibration of satellite data, investigation of the air-sea interface, as well as forecasting and climatological studies. In this study, kinematic precise point positioning has been developed to investigate WV in the Arctic Ocean (80°-87°N) and annual variations are obtained for 2008 and 2012 that are identical to those related to the enhanced greenhouse effect.展开更多
The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake i...The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake is of great importance to the improvement of water environment in the valley and the eutrophication status in th lake. Firstly, the basic ideas, key taches and main methods for water pollution control of inflow rivers of Taihu Lake was put forward in this article, Basic on these theories, the pollutant source status in the comprehensive treatment zone of the 15 major inflow rivers was analysized, the countermeasures of pollution control and main regulation projects were introduced, and the total abatement of pollutants was predicted. With the implement of regulation projects, the number of rivers with water quality worse than Grade V among the 15 major inflow rivers had come from 9 to 3, and the eutrophication status of Taihu Lake had changed from medium level to light level. The overall treatment of the major inflow rivers of the Taihu Lake had achieved initial success.展开更多
The structure of current speed and the variability of volume transports of the Kuroshio in the Tokara-kaikyo and Osumi-kaikyo are discussed on the basis of data of KER in the period from 1977 to 1984. The average geos...The structure of current speed and the variability of volume transports of the Kuroshio in the Tokara-kaikyo and Osumi-kaikyo are discussed on the basis of data of KER in the period from 1977 to 1984. The average geostrophic transport through these two straits is estimated to be 24. 5×106 m3/s and only 1/12 of the transport is through the Osumi-kaiky5. Countercurrents on both sides of the Kuroshio trunk are observed in the Tokara-kaikyo. Calculation indicates that the average geostrophic current speed is less than the GEK current speed, systematically. On the basis of the current measurements, the northward transports through the Taiwan Strait in winter and summer are estimated to be 1. 05×106and 3. 16×106m3/s, respectively. From Chu's data (1976) the average transport of the Kuroshio flowing into the East China Sea passing through the passage east of Taiwan is about 29. 3×106m3/s. From Miita and Ogawa's data (1984) the average transport through the Tsushima-kaikyo is 3. 6×106m3/s. Thus the volume transports through the above four straits are roughly in balance, the total outflowing transport is slightly larger than the total inflowing transport. The possible reasons resulting in the difference of transports are also discussed.展开更多
Through a systematic observation of water level and temperature, and a comprehensive analysis of the data on major/trace elements, nitrite, hydrogen-oxygen isotopes, the conclusion has been drawn that there are two re...Through a systematic observation of water level and temperature, and a comprehensive analysis of the data on major/trace elements, nitrite, hydrogen-oxygen isotopes, the conclusion has been drawn that there are two relatively independent groundwater systems (cool water and hot water), and the geochemical indicators of hot/cool waters are described. The cool water system is relatively enriched in Ca2+, Mg2+ and HCO3-. Its TDS is relatively low, about 1400–1800 mg/L. The hot water system is relatively enriched in K+, Na+, Cl- and SO42-. Its TDS is relatively high, about 2200–2300 mg/L. The cool water system is enriched in Ba, Ga, Cd, and the hot water system is enriched in B, Ti, Cr, Ni, Cu, Mo, Rb, and Cs, relatively. Especially, the contents of Rb and Cs in the hot water system are more than five times as high as those in the cool water system. The NO3- contents of cool water discharged from the gold mine are relatively high, and those of hot water are extremely low. The δD and δ18O values follow an increasing order of surface water>mine cool water>mine hot water. The cool water comes mainly from the lateral supply of phreatic water, while the hot water comes mainly from the vertical supply of deeply circulating structure-fracture water. The ratio of cool water over hot water was estimated to be about 1:1 by a water quality model..展开更多
Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre...Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre-sent paper reports the chlorophyll data collected and primary productivity estimated there. Water sam-ples were taken with a glass bottle of Model HQMat the depth of 0, 10. 25, 50, 75, 100 and 150m, separately. Chlorophyll was determined according to the spectrophotometry proposed by UNESCO(1966) and calculated with the trichromatic equations of Jeffrey-Humphrey(1975). Estimations ofprimary productivity were carried out using a simplified equation (Q = 1.5) given by Cadee(1975).展开更多
A multi-constituent water quality model is presented,Which relates carbonaceous biochemical oxygen demand (CBOD),amonia (NH3-N), nitrite(NO2-N), nitrate(NO3-N) and dissolvedoxygen(DO). The parameters are solved by Mar...A multi-constituent water quality model is presented,Which relates carbonaceous biochemical oxygen demand (CBOD),amonia (NH3-N), nitrite(NO2-N), nitrate(NO3-N) and dissolvedoxygen(DO). The parameters are solved by Marquardt Method (i. e.,Dampled Least Square Method) while initial values inoptimization are produced by Monte-Carlo Method. The Potential ofthe method as a parameter estimation aid is demonstrated for theapplication to the Liangyi Rver, JiangSu Province of China and by aspecial comparison with Gauss Method.展开更多
The response by the government of Tanzania to food security and poverty alleviation in the Naming’ongo area in Mbozi District has been to develop Naming’ongo irrigation scheme as well as construct a bridge across Ri...The response by the government of Tanzania to food security and poverty alleviation in the Naming’ongo area in Mbozi District has been to develop Naming’ongo irrigation scheme as well as construct a bridge across River Nkana to connect the farms and other parts of the district to facilitate a reliable transportation of the produce to the market. The Australian Water Balance Model that was calibrated by using 10 years data from a nearby sub-catchment of Mbarali. The Naming’ongo Sub-catchment was delineated form a 30 m digital elevation model. The observed rainfall was obtained from Mbozi Meteorological station. The study approximated the peak flows in River Nkana for a return period of 50 years to be slightly above 560 m3/s. This was considered to be adequate for the proposed structure. The study recommends that when undertaking human activities such as deforestation and cultivation an account for soil and environmental conservation should be considered. While it is necessary to establish a monitoring system within the catchment, the designs of future hydraulic structures should incorporate stream flow measuring facilities.展开更多
Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi L...Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.展开更多
In a karst tunnel, fissures or cracks that are filled with weathered materials are a type of potential water outlet as they are easily triggered and converted into groundwater outlets under the influence of high groun...In a karst tunnel, fissures or cracks that are filled with weathered materials are a type of potential water outlet as they are easily triggered and converted into groundwater outlets under the influence of high groundwater pressure. A terrible water inrush caused by potential water outlets can seriously hinder the project construction. Potential water outlets and water sources that surrounding the tunnel must be detected before water inflow can be treated. This paper provides a successful case of the detection and treatment of water inflow in a karst tunnel and proposes a potential water outlet detection(PWOD) method in which heavy rainfall(>50 mm/d) is considered a trigger for a potential water outlet. The Daba tunnel located in Hunan province, China, has been constructed in a karst stratum where the rock mass has been weathered intensely by the influence of two faults. Heavy rain triggered some potential water outlets, causing a serious water inrush. The PWOD method was applied in this project for the treatment of water inflow, and six potential water outlets in total were identified through three heavy rains. Meanwhile, a geophysical prospecting technique was also used to detect water sources. The connections between water outlets and water sources were identified with a 3-D graphic that included all of them. According to the distribution of water outlets and water sources, the detection area was divided into three sections and separately treated by curtain grouting.展开更多
[Objective] To study the characteristics and effects of inorganic nitrogen in east water-source and inflow rivers of Chaohu Lake. [Method] The speciation and distribution characteristics of dissolvable inorganic nitro...[Objective] To study the characteristics and effects of inorganic nitrogen in east water-source and inflow rivers of Chaohu Lake. [Method] The speciation and distribution characteristics of dissolvable inorganic nitrogen (DIN) in east water-source and inflow rivers of Chaohu Lake were investigated, and their effects on water qual- ity were examined. [Result] The concentrations of NH3-N and NO2--N were the high in flood season, and low in non-flood season, while the concentration of NO3--N pre- sented the opposite trend; the concentration of NO3--N was the highest in Shuangqiao estuary, where the pollution was the worst. DIN in Zhegao estuary and Xiaozhegao estuary was mainly caused by domestic sewage and industrial wastewaters; surface runoff and pollution from ships contribute the most to the DIN content in Shuangqiao estuary. [Conclusion] This study provided basic data and theoretical basis for the control and management of eutrophication in Chaohu Lake.展开更多
Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the str...Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the supporting structures.展开更多
Gongbo Nature Reserve, located in Nyingchi of Tibet, is by far the largest construction project of forest reserves that China approves and invests in. This article adopts the shadow project method, and estimates the w...Gongbo Nature Reserve, located in Nyingchi of Tibet, is by far the largest construction project of forest reserves that China approves and invests in. This article adopts the shadow project method, and estimates the water conservation function of forest ecosystem of Gongbo Nature Reserve based on the Specifications for Assessment of Forest Ecosystem Services in China promulgated by State Forestry Administration of China. The results show that the total value of water conservation of forest ecosystem in Gongbo Nature Reserve is 8.485 billion yuan, while the function of water conservation is a small fraction of ecological service function, indicating that there is great ecological value in service function of forest ecosystem in Gongbo Nature Reserve, that is, Gongbo Nature Reserve has vital ecological value.展开更多
The effects of street bottom heating and inflow turbulence on urbanstreet-canyon flow are experimentally investigated using a circulating water channel. Threeexperiments are carried out for a street canyon with a stre...The effects of street bottom heating and inflow turbulence on urbanstreet-canyon flow are experimentally investigated using a circulating water channel. Threeexperiments are carried out for a street canyon with a street aspect ratio of 1. Results from eachexperiment with bottom heating or inflow turbulence are compared with those without bottom heatingand appreciable inflow turbulence. It is demonstrated that street bottom heating or inflowturbulence increases the intensity of the canyon vortex. A possible explanation on how street bottomheating or inflow turbulence intensifies the canyon vortex is given from a fluid dynamicalviewpoint.展开更多
To assess the water inflow which is more suitable to the actual conditions of tunnel,an empirical correlation about the permeability coefficient changing with depth is introduced.Supposing that the surrounding rock is...To assess the water inflow which is more suitable to the actual conditions of tunnel,an empirical correlation about the permeability coefficient changing with depth is introduced.Supposing that the surrounding rock is heterogeneous isotropy,the formula for calculating water inflow of tunnel with the nonlinear variation of permeability coefficient is deduced.By the contrast analysis with the existing formulas,the presented method has the similar value to them;moreover,the presented method has more simple form and easy to use.Due to parameter analysis,the water inflow decreases after considering the nonlinear variation of permeability coefficient.When the attenuation coefficient a>0,the water inflow increases first till reaches the maximum at a certain depth,then decreases and is close to 0 finally if deep enough.Thus,it is better to keep away from the certain depth where it is with the maximum water inflow for safe operation and economical construction,and reduce the water damage.Based on the analysis,the radius of tunnel has less impact on the amount of water inflow,and the water inflow just increases by 6.7% when the radius of tunnel increases by 1 m.展开更多
Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, an...Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10 L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators' front face decreases, but this increase does not influence the diameter of the supercavity's maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing waterflux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.展开更多
文摘In order to prevent and control the water inflow of mines, this paper built a new initial GM(1, 1) model to torecast the maximum water inflow according to the principle of new information. The effect of the new initial GM(1, 1) model is not ideal by the concrete example. Then according to the principle of making the sum of the squares of the difference between the calculated sequences and the original sequences, an optimized GM(1, I) model was established. The result shows that this method is a new prediction method which can predict the maximum water inflow accurately. It not only conforms to the guide- line of prevention primarily, but also provides reference standards to managers on making prevention measures.
文摘The acute toxic effects of ammonium sulphate to fresh-water catfish, Heteropneustes fossilis (H.fossilis) have been studied by determining LC50 values with 95% confidence limits, by the graphic method, the logistic method, the Spearman and Karber method and the trimmed Spearman-Karber method. The trimmed Spearman-Karber method was found the most ideal for ammonium salt toxicity test. The flaws in the trimmed Spearman-Karber method are also discussed.
基金Supported by the National Basic Research Program of China(973 Program,2010CB955905)the Fund of Chengde Municipal Finance Bureau(CZ2013004)~~
文摘[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasis in the next15 years were calculated according to water-soil balance. [Result] When the runoff of Hotan River is at a probability of 50%(P=50 for short), the total water resource is 50.57×10^8m^3, and there is only 33.13×10^8m^3available for social and economics,but there would be a need of 33.44×10^8and 36.06×10^8m^3, and the water shortage would be 1.31 ×10^8and 2.93 ×10^8m^3in 2020 and 2030 respectively. When P =75,the total water resource is 44.30×10^8m^3, there is only 29.39×10^8m^3water available for social and economics. However, there would be a need of 31.43 ×10^8and33.11×10^8m^3, and the water shortage would be 2.04×10^8and 3.72×10^8m^3in 2020 and 2030, respectively. [Conclusion] The problem of water shortage would be serious over the next 15 years, and the fragile ecosystem would be destroyed dramatically with the large-scale land reclamation against natural laws. Hence, the effective policies and measures should be taken timely to prohibit reclamation and to cope with ongoing water shortage, based on the water supply and demand estimation under the background of climate change.
文摘Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alternative for numerical simulations.The common approach in other research shows average damage spots per mesh estimated statistically independent to one another.Spatially distributed lifeline systems,such as water supply pipelines,are interconnected,and seismic spatial variability affects the damages across the region;thus,spatial correlation of damage spots is an important factor in target areas for portfolio loss estimation.Generally,simulations are used to estimate possible losses;however,these assume each damage behaves independently and uncorrelated.This paper assumed that damages per mesh behave in a Poisson distribution to avoid over-dispersion and eliminate negative losses in estimations.The purpose of this study is to obtain a probabilistic portfolio loss model of an extensive water supply area.The proposed model was compared to the numerical simulation data with the correlated Poisson distribution.The application of the Normal To Anything(NORTA)obtained correlations for Poisson Distributions.The proposed probabilistic portfolio loss model,based on the generalized linear model and central limit theory,estimated the possible losses,such as the Probable Maximum Loss(PML,90%non-exceedance)or Normal Expected Loss(NEL,50%non-exceedance).The proposed model can be used in other lifeline systems as well,though additional investigation is needed for confirmation.From the estimations,a seismic physical portfolio loss for the water supply system was presented.The portfolio was made to show possible outcomes for the system.The proposed method was tested and analyzed using an artificial field and a location-based scenario of a water supply pipeline system.This would aid in pre-disaster planning and would require only a few steps and time.
基金This work was supported by the National Natural Science Foundation of China under the Grant No. 49794030, the National Key Program of Science and Technology of China (2001BA610A-06-05), and the Science Foundation of the China Meteorological Administrat
文摘GMS-5 satellite data at channels of infrared split windows and water vapor are analyzed to retrieve the precipitable water (PW) distributions under cloud-free conditions. Radiosonde data and surface station data are applied to estimate the PW distributions under cloudy conditions. These two methods are then merged to obtain the PW distributions under all-weather conditions during the Huaihe River Basin Energy and Water Cycle Experiment (HUBEX). The results of the all-weather PW distributions from these methods demonstrate that this new merging technique may be applied to derive large-scale or global maps of PW. It is revealed that the atmospheric water vapor over the Yangtze-Huaihe River Basins came mainly from the southwest during the 1998 prevailing period of Meiyu. Sufficient atmospheric PW is a necessary condition for ground rainfall. Under certain dynamic conditions, it can be partially transformed into surface precipitation. Several types of rain are displayed and their PW conditions and characteristics, as well as atmospheric dynamic conditions, are analyzed. It is demonstrated that surface precipitation centers usually appear not at the high PW centers but on their downwind sides.
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract Nos CHINARE2013-03-03 and CHINARE 2013-04-03the National Oceanic Commonweal Research Project under contract No.201105001the National Natural Science Foundation of China under contract No.41374043
文摘The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Global Positioning System (GPS) has become available, which can routinely achieve accuracies for integrated WV content of 1-2 kg/m2. Some experimental work has shown that the accuracy of WV measurements from a moving platform is comparable to that of (static) land-based receivers. Extending this technique into the marine environment on a moving platform would be greatly beneficial for many aspects of meteorological research, such as the calibration of satellite data, investigation of the air-sea interface, as well as forecasting and climatological studies. In this study, kinematic precise point positioning has been developed to investigate WV in the Arctic Ocean (80°-87°N) and annual variations are obtained for 2008 and 2012 that are identical to those related to the enhanced greenhouse effect.
文摘The pollutants from the 15 rivers inflowing into Lake Taihu accounted for about 80% of the total amount of the pollutants inflowing into Lake Taihu. Therefore, overall treatment of the inflowing rivers of Taihu Lake is of great importance to the improvement of water environment in the valley and the eutrophication status in th lake. Firstly, the basic ideas, key taches and main methods for water pollution control of inflow rivers of Taihu Lake was put forward in this article, Basic on these theories, the pollutant source status in the comprehensive treatment zone of the 15 major inflow rivers was analysized, the countermeasures of pollution control and main regulation projects were introduced, and the total abatement of pollutants was predicted. With the implement of regulation projects, the number of rivers with water quality worse than Grade V among the 15 major inflow rivers had come from 9 to 3, and the eutrophication status of Taihu Lake had changed from medium level to light level. The overall treatment of the major inflow rivers of the Taihu Lake had achieved initial success.
文摘The structure of current speed and the variability of volume transports of the Kuroshio in the Tokara-kaikyo and Osumi-kaikyo are discussed on the basis of data of KER in the period from 1977 to 1984. The average geostrophic transport through these two straits is estimated to be 24. 5×106 m3/s and only 1/12 of the transport is through the Osumi-kaiky5. Countercurrents on both sides of the Kuroshio trunk are observed in the Tokara-kaikyo. Calculation indicates that the average geostrophic current speed is less than the GEK current speed, systematically. On the basis of the current measurements, the northward transports through the Taiwan Strait in winter and summer are estimated to be 1. 05×106and 3. 16×106m3/s, respectively. From Chu's data (1976) the average transport of the Kuroshio flowing into the East China Sea passing through the passage east of Taiwan is about 29. 3×106m3/s. From Miita and Ogawa's data (1984) the average transport through the Tsushima-kaikyo is 3. 6×106m3/s. Thus the volume transports through the above four straits are roughly in balance, the total outflowing transport is slightly larger than the total inflowing transport. The possible reasons resulting in the difference of transports are also discussed.
文摘Through a systematic observation of water level and temperature, and a comprehensive analysis of the data on major/trace elements, nitrite, hydrogen-oxygen isotopes, the conclusion has been drawn that there are two relatively independent groundwater systems (cool water and hot water), and the geochemical indicators of hot/cool waters are described. The cool water system is relatively enriched in Ca2+, Mg2+ and HCO3-. Its TDS is relatively low, about 1400–1800 mg/L. The hot water system is relatively enriched in K+, Na+, Cl- and SO42-. Its TDS is relatively high, about 2200–2300 mg/L. The cool water system is enriched in Ba, Ga, Cd, and the hot water system is enriched in B, Ti, Cr, Ni, Cu, Mo, Rb, and Cs, relatively. Especially, the contents of Rb and Cs in the hot water system are more than five times as high as those in the cool water system. The NO3- contents of cool water discharged from the gold mine are relatively high, and those of hot water are extremely low. The δD and δ18O values follow an increasing order of surface water>mine cool water>mine hot water. The cool water comes mainly from the lateral supply of phreatic water, while the hot water comes mainly from the vertical supply of deeply circulating structure-fracture water. The ratio of cool water over hot water was estimated to be about 1:1 by a water quality model..
文摘Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre-sent paper reports the chlorophyll data collected and primary productivity estimated there. Water sam-ples were taken with a glass bottle of Model HQMat the depth of 0, 10. 25, 50, 75, 100 and 150m, separately. Chlorophyll was determined according to the spectrophotometry proposed by UNESCO(1966) and calculated with the trichromatic equations of Jeffrey-Humphrey(1975). Estimations ofprimary productivity were carried out using a simplified equation (Q = 1.5) given by Cadee(1975).
文摘A multi-constituent water quality model is presented,Which relates carbonaceous biochemical oxygen demand (CBOD),amonia (NH3-N), nitrite(NO2-N), nitrate(NO3-N) and dissolvedoxygen(DO). The parameters are solved by Marquardt Method (i. e.,Dampled Least Square Method) while initial values inoptimization are produced by Monte-Carlo Method. The Potential ofthe method as a parameter estimation aid is demonstrated for theapplication to the Liangyi Rver, JiangSu Province of China and by aspecial comparison with Gauss Method.
文摘The response by the government of Tanzania to food security and poverty alleviation in the Naming’ongo area in Mbozi District has been to develop Naming’ongo irrigation scheme as well as construct a bridge across River Nkana to connect the farms and other parts of the district to facilitate a reliable transportation of the produce to the market. The Australian Water Balance Model that was calibrated by using 10 years data from a nearby sub-catchment of Mbarali. The Naming’ongo Sub-catchment was delineated form a 30 m digital elevation model. The observed rainfall was obtained from Mbozi Meteorological station. The study approximated the peak flows in River Nkana for a return period of 50 years to be slightly above 560 m3/s. This was considered to be adequate for the proposed structure. The study recommends that when undertaking human activities such as deforestation and cultivation an account for soil and environmental conservation should be considered. While it is necessary to establish a monitoring system within the catchment, the designs of future hydraulic structures should incorporate stream flow measuring facilities.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2007AA06A405, 2005AA6010100401)
文摘Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.
基金supported by the National Key Research and Development Project (Grant No.2016YFC0801604)Natural Science Foundation of Shandong Province (Grant No.ZR2017MEE070)
文摘In a karst tunnel, fissures or cracks that are filled with weathered materials are a type of potential water outlet as they are easily triggered and converted into groundwater outlets under the influence of high groundwater pressure. A terrible water inrush caused by potential water outlets can seriously hinder the project construction. Potential water outlets and water sources that surrounding the tunnel must be detected before water inflow can be treated. This paper provides a successful case of the detection and treatment of water inflow in a karst tunnel and proposes a potential water outlet detection(PWOD) method in which heavy rainfall(>50 mm/d) is considered a trigger for a potential water outlet. The Daba tunnel located in Hunan province, China, has been constructed in a karst stratum where the rock mass has been weathered intensely by the influence of two faults. Heavy rain triggered some potential water outlets, causing a serious water inrush. The PWOD method was applied in this project for the treatment of water inflow, and six potential water outlets in total were identified through three heavy rains. Meanwhile, a geophysical prospecting technique was also used to detect water sources. The connections between water outlets and water sources were identified with a 3-D graphic that included all of them. According to the distribution of water outlets and water sources, the detection area was divided into three sections and separately treated by curtain grouting.
基金Supported by the Special Fund for the Control and Management of Chaohu Lake of the National Key Technology R&D Program,China(2008ZX07103-005)the Special Fund for the Control and Management of Huaihe River of the National Key Technology R&D Program,China(2008ZX07010-004)+1 种基金National Natural Science Foundation of China(40073030,40972092,41172121)the Natural Science Foundation of Anhui Province,China(090413083)~~
文摘[Objective] To study the characteristics and effects of inorganic nitrogen in east water-source and inflow rivers of Chaohu Lake. [Method] The speciation and distribution characteristics of dissolvable inorganic nitrogen (DIN) in east water-source and inflow rivers of Chaohu Lake were investigated, and their effects on water qual- ity were examined. [Result] The concentrations of NH3-N and NO2--N were the high in flood season, and low in non-flood season, while the concentration of NO3--N pre- sented the opposite trend; the concentration of NO3--N was the highest in Shuangqiao estuary, where the pollution was the worst. DIN in Zhegao estuary and Xiaozhegao estuary was mainly caused by domestic sewage and industrial wastewaters; surface runoff and pollution from ships contribute the most to the DIN content in Shuangqiao estuary. [Conclusion] This study provided basic data and theoretical basis for the control and management of eutrophication in Chaohu Lake.
基金supported by the Chongqing Natural Science Foundation(No.cstc2020jcyjmsxm X0904)the Chongqing Talent Plan(No.CQYC2020058263)+3 种基金the Chongqing Technology Innovation and Application Development Project(No.cstc2021ycjh-bgzxm0246)the China Postdoctoral Science Foundation(No.2021M693739)the Sichuan Science and Technology Program(No.2021YJ0539)the Natural Science foundation of Jiangsu higher education institutions of China(Grant No.19KJD170001)。
文摘Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the supporting structures.
基金Supported by Humanities and Social Sciences Research Foundation of the Ministry of Education (09XJCZH010)
文摘Gongbo Nature Reserve, located in Nyingchi of Tibet, is by far the largest construction project of forest reserves that China approves and invests in. This article adopts the shadow project method, and estimates the water conservation function of forest ecosystem of Gongbo Nature Reserve based on the Specifications for Assessment of Forest Ecosystem Services in China promulgated by State Forestry Administration of China. The results show that the total value of water conservation of forest ecosystem in Gongbo Nature Reserve is 8.485 billion yuan, while the function of water conservation is a small fraction of ecological service function, indicating that there is great ecological value in service function of forest ecosystem in Gongbo Nature Reserve, that is, Gongbo Nature Reserve has vital ecological value.
文摘The effects of street bottom heating and inflow turbulence on urbanstreet-canyon flow are experimentally investigated using a circulating water channel. Threeexperiments are carried out for a street canyon with a street aspect ratio of 1. Results from eachexperiment with bottom heating or inflow turbulence are compared with those without bottom heatingand appreciable inflow turbulence. It is demonstrated that street bottom heating or inflowturbulence increases the intensity of the canyon vortex. A possible explanation on how street bottomheating or inflow turbulence intensifies the canyon vortex is given from a fluid dynamicalviewpoint.
基金Projects(51478477,51508562,51508563)supported by the National Natural Science Foundation of China
文摘To assess the water inflow which is more suitable to the actual conditions of tunnel,an empirical correlation about the permeability coefficient changing with depth is introduced.Supposing that the surrounding rock is heterogeneous isotropy,the formula for calculating water inflow of tunnel with the nonlinear variation of permeability coefficient is deduced.By the contrast analysis with the existing formulas,the presented method has the similar value to them;moreover,the presented method has more simple form and easy to use.Due to parameter analysis,the water inflow decreases after considering the nonlinear variation of permeability coefficient.When the attenuation coefficient a>0,the water inflow increases first till reaches the maximum at a certain depth,then decreases and is close to 0 finally if deep enough.Thus,it is better to keep away from the certain depth where it is with the maximum water inflow for safe operation and economical construction,and reduce the water damage.Based on the analysis,the radius of tunnel has less impact on the amount of water inflow,and the water inflow just increases by 6.7% when the radius of tunnel increases by 1 m.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 51579209, 51409215 and 51679202
文摘Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10 L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators' front face decreases, but this increase does not influence the diameter of the supercavity's maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing waterflux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.