AIM To evaluate usefulness of single photon emission computed tomography(SPECT) with three-dimensional stereotactic surface projection(3D-SSP) in distinguishing between Alzheimer's disease(AD) and depression.METHO...AIM To evaluate usefulness of single photon emission computed tomography(SPECT) with three-dimensional stereotactic surface projection(3D-SSP) in distinguishing between Alzheimer's disease(AD) and depression.METHODS We studied 43 patients who presented with both depressive symptoms and memory disturbance. Each subject was evaluated using the following:(1) the Minimal Mental State Examination;(2) the Hamilton Rating Scale for Depression;(3) Clinical Global Impression-Severity scale(CGI-S); and(4) SPECT imaging with 3D-SSP.RESULTS The MMSE scores correlated significantly with the maximum Z-scores of AD-associated regions. CGI-S scores correlated significantly with the maximum Z-scores of depression-associated regions. Factor analysis identified three significant factors. Of these, Factor 1 could be interpreted as favouring a tendency for AD, Factor 2 as favouring a tendency for pseudo-dementia, and Factor 3 as favouring a depressive tendency.CONCLUSION We investigated whether these patients could be categorized as types: Type A(true AD), Type B(pseudodementia), Type C(occult AD), and Type D(true depression). The factor scores in factor analysis supported the validity of this classification. Our results suggest that SPECT with 3D-SSP is highly useful for distinguishing between depression and depressed mood in the early stage of AD.展开更多
Rapid halide anion exchange easily occurring in metal-halide perovskite nanoparticles(NPs)makes it nearly impossible to create a single three-dimensional(3D)CsPbX_(3)(X=Cl,Br,I)NP that simultaneously comprises two sep...Rapid halide anion exchange easily occurring in metal-halide perovskite nanoparticles(NPs)makes it nearly impossible to create a single three-dimensional(3D)CsPbX_(3)(X=Cl,Br,I)NP that simultaneously comprises two separate perovskite components.To circumvent this problem,we first propose a Ni^(2+)-mediated halide anion-exchange strategy in zero-dimensional(0D)Ni^(2+)-doped Cs_(4)PbBr_(6)(Cs_(4)PbBr_(6):Ni)perovskites to achieve ultra-stable 3D CsPbX_(3)NPs with two coexisting different perovskite individuals of CsPbCl_(3)and/or CsPbBr_(3).By combining the experimental results with first-principles calculations,we confirm that the completely isolated[PbBr_(6)]4−octahedra in 0D Cs_(4)PbBr_(6):Ni NPs can restrict rapid halide anion exchange and the anion diffusion preferentially proceeds in the proximity of substitutional NiPb centers,namely[NiBr_(6)]4−octahedra in a meta-stable state,rather than in the 0D Cs_(4)PbBr_(6)and residual 3D CsPbBr_(3)regions,thereby delivering intrinsic dual-band excitonic luminescence from a single 3D CsPbX_(3)NP with a more stable and efficient CsPbCl_(3)component as compared to its counterparts synthesized using conventional methods.These new insights regarding the precise control of halide anion exchange enable the preparation of a new type of high-efficiency perovskite materials with suppressed anion interdiffusion for prospective optoelectronic devices.展开更多
Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the inter...Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.展开更多
BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution...BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution and contrast in macrosection images. OBJECTIVE: To explore a semi-automatic computerized three-dimensional (3D) reconstruction of human spinal cord based on histological serial sections, in order to solve issues such as low contrast. DESIGN, TIME AND SETTING: An experimental study combining serial section techniques and 3D reconstruction, performed in the laboratory of Human Anatomy and Histoembryology at the Medical School of Nantong University during January to April 2008. SETTING: Department of Anatomy, Institute of Neurobiology, Jiangsu Province Key Laboratory of Neural Regeneration, Laboratory of Image Engineering. MATERIALS: A human lumbar spinal cord segment from fresh autopsy material of an adult male. METHODS: After 4% paraformaldehyde fixation for three days, serial sections of the lumbar spinal cord were cut on a Leica cryostat and mounted on slides in sequence, with eight sections aligned separately on each slide. All sections were stained with Luxol Fast Blue to reveal myelin sheaths. After gradient dehydration and clearing, the stained slides were coverslipped. Sections were observed and images recorded under a light microscope using a digital camera. Six images were acquired at x25 magnification and automatically stitched into a complete section image. After all serial images were obtained, 96 complete serial images of the human lumbar cord segment were automatically processed with "Curves", "Autocontrast", "Gray scale 8 bit", "Invert", "Image resize to 50%" steps using Photoshop 7.0 software. All images were added in order into 3D-DOCTOR 4.0 software as a stack, where serial images were automatically realigned with neighboring images and semi-automatically segmented for white matter and gray matter. Finally, simple surface and volume reconstruction were completed on a personal computer. The reconstructed human lumbar spinal cord segment was interactively observed, cut, and measured. MAIN OUTCOME MEASURES: The reconstructed human lumbar spinal cord segment. RESULTS: Compared with serial images obtained from other image modalities, such as CT, MRI, and macrosections from The Visual Human Project database, the Luxol Fast Blue stained histological serial section images exhibited higher resolution and contrast between gray and white matter. Image processing and 3D reconstruction steps were semi-automatically performed with related software. The 3D reconstructed human lumbar cord segment were observed, cut, and measured on a PC. CONCLUSION: A semi-automatically computerized method, based on histological serial sections, is an effective way to 3D-reconstruct the human spinal cord.展开更多
The calculation of flow and sediment transport is one of the most important tasks in river engineering. The task is particularly difficult because a number of complex physical phenomena should be accounted for more re...The calculation of flow and sediment transport is one of the most important tasks in river engineering. The task is particularly difficult because a number of complex physical phenomena should be accounted for more realistically in a model with a predictive power. Three-dimensional calculations of river flow and suspended sediment transport are performed in this paper with application in the Three Gorges Reservoir in the Yangtze River. A period of 76 years after the dam is built is simulated and the results are compared with laboratory measurements obtained by Tsinghua University whereby the model is verified and calibrated. Generally speaking, the calculated results agree well with the experiments, demonstrating that the present model can be used for flow and sediment transport prediction in rivers.展开更多
Projection is a widely used method in bipartite networks. However, each projection has a specific application scenario and differs in the forms of mapping for bipartite networks. In this paper, inspired by the network...Projection is a widely used method in bipartite networks. However, each projection has a specific application scenario and differs in the forms of mapping for bipartite networks. In this paper, inspired by the network-based information exchange dynamics, we propose a uniform framework of projection. Subsequently, an information exchange rate projection based on the nature of community structures of a network (named IERCP) is designed to detect community structures of bipartite networks. Results from the synthetic and real-world networks show that the IERCP algorithm has higher performance compared with the other projection methods. It suggests that the IERCP may extract more information hidden in bipartite networks and minimize information loss.展开更多
A three-dimensional, first order turbulence closure, thermal diffusion model is described in this paper. The governing equations consist of an equation of continuity, three components of momentum, conservation equatio...A three-dimensional, first order turbulence closure, thermal diffusion model is described in this paper. The governing equations consist of an equation of continuity, three components of momentum, conservation equations for salt, temperature and subgridscale energy, and an equation of state. In the model, according to the hypothesis of Kolmogorov and Prandtl, the viscosity coefficient of turbulent flow of homogeneous fluid is related to the local turbulent energy, and the horizontal and vertical exchange coefficients of mass, heat and momentum are computed with the introduction of subgridscale turbulence energy. The governing equations are solved by finite difference techniques. This model is applied to the Jiaozhou bay to predict thermal pollution by the Huangdao power plant. An instantaneous tidal current field is computed, then the distribution of temperature increment is predicted, and finally the effect of wind stress on thermal discharge is discussed.展开更多
Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera...Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera synchronization,limiting the use of affordable imaging devices and their consumer applications.In this work,we introduce an asynchronous structured light imaging approach based on generative deep neural networks to relax the synchronization constraint,accomplishing the challenges of fringe pattern aliasing,without relying on any a priori constraint of the projection system.To overcome this need,we propose a generative deep neural network with U-Net-like encoder-decoder architecture to learn the underlying fringe features directly by exploring the intrinsic prior principles in the fringe pattern aliasing.We train within an adversarial learning framework and supervise the network training via a statisticsinformed loss function.We demonstrate that by evaluating the performance on fields of intensity,phase,and 3D reconstruction.It is shown that the trained network can separate aliased fringe patterns for producing comparable results with the synchronous one:the absolute error is no greater than 8μm,and the standard deviation does not exceed 3μm.Evaluation results on multiple objects and pattern types show it could be generalized for any asynchronous structured light scene.展开更多
This study investigated the effects of zigzag-flow channel bending angle in printed circuit heat exchangers(PCHEs) using a computational fluid dynamics method with ANSYS-FLUENT simulation.The three-dimensional model o...This study investigated the effects of zigzag-flow channel bending angle in printed circuit heat exchangers(PCHEs) using a computational fluid dynamics method with ANSYS-FLUENT simulation.The three-dimensional model of PCHE with a 15° curved,zigzag channel was conducted for preliminary validation.The comparisons between the CFD simulation results and the experimental data showed good agreement with some discrepancies in the heat transfer and pressure drop results.In addition,different bending angle configurations(0°,3° to 30°) of zigzag channels were analyzed to obtain better thermal-hydraulic performance of the zigzag channel PCHE under different inlet mass flow rates.The criteria of heat transfer and frictional factor were applied to evaluate the thermal-hydraulic performance of the PCHE.The results showed that the 6° and 9°bending channel provided good thermal-hydraulic performance.New correlations were developed using the 6°and 9° bending channel angles in PCHE designs to predict the Nusselt number and friction factor.展开更多
文摘AIM To evaluate usefulness of single photon emission computed tomography(SPECT) with three-dimensional stereotactic surface projection(3D-SSP) in distinguishing between Alzheimer's disease(AD) and depression.METHODS We studied 43 patients who presented with both depressive symptoms and memory disturbance. Each subject was evaluated using the following:(1) the Minimal Mental State Examination;(2) the Hamilton Rating Scale for Depression;(3) Clinical Global Impression-Severity scale(CGI-S); and(4) SPECT imaging with 3D-SSP.RESULTS The MMSE scores correlated significantly with the maximum Z-scores of AD-associated regions. CGI-S scores correlated significantly with the maximum Z-scores of depression-associated regions. Factor analysis identified three significant factors. Of these, Factor 1 could be interpreted as favouring a tendency for AD, Factor 2 as favouring a tendency for pseudo-dementia, and Factor 3 as favouring a depressive tendency.CONCLUSION We investigated whether these patients could be categorized as types: Type A(true AD), Type B(pseudodementia), Type C(occult AD), and Type D(true depression). The factor scores in factor analysis supported the validity of this classification. Our results suggest that SPECT with 3D-SSP is highly useful for distinguishing between depression and depressed mood in the early stage of AD.
基金supported by the Fund of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information(grant nos.2020ZZ114 and 2022ZZ204)the Key Research Program of Frontier Science CAS(grant no.QYZDY-SSW-SLH025)+1 种基金the National Natural Science Foundation of China(grant nos.21731006 and 21871256)the Fund of Advanced Energy Science and Technology Guangdong Laboratory(grant no.DJLTN0200/DJLTN0240).
文摘Rapid halide anion exchange easily occurring in metal-halide perovskite nanoparticles(NPs)makes it nearly impossible to create a single three-dimensional(3D)CsPbX_(3)(X=Cl,Br,I)NP that simultaneously comprises two separate perovskite components.To circumvent this problem,we first propose a Ni^(2+)-mediated halide anion-exchange strategy in zero-dimensional(0D)Ni^(2+)-doped Cs_(4)PbBr_(6)(Cs_(4)PbBr_(6):Ni)perovskites to achieve ultra-stable 3D CsPbX_(3)NPs with two coexisting different perovskite individuals of CsPbCl_(3)and/or CsPbBr_(3).By combining the experimental results with first-principles calculations,we confirm that the completely isolated[PbBr_(6)]4−octahedra in 0D Cs_(4)PbBr_(6):Ni NPs can restrict rapid halide anion exchange and the anion diffusion preferentially proceeds in the proximity of substitutional NiPb centers,namely[NiBr_(6)]4−octahedra in a meta-stable state,rather than in the 0D Cs_(4)PbBr_(6)and residual 3D CsPbBr_(3)regions,thereby delivering intrinsic dual-band excitonic luminescence from a single 3D CsPbX_(3)NP with a more stable and efficient CsPbCl_(3)component as compared to its counterparts synthesized using conventional methods.These new insights regarding the precise control of halide anion exchange enable the preparation of a new type of high-efficiency perovskite materials with suppressed anion interdiffusion for prospective optoelectronic devices.
文摘Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.
基金Natural Science Research Plan forJiangsu Colleges, No.05KJB180105 Postgraduate Innovation Cultivating Projectin Jiangsu Province, No.CX07s_035z
文摘BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution and contrast in macrosection images. OBJECTIVE: To explore a semi-automatic computerized three-dimensional (3D) reconstruction of human spinal cord based on histological serial sections, in order to solve issues such as low contrast. DESIGN, TIME AND SETTING: An experimental study combining serial section techniques and 3D reconstruction, performed in the laboratory of Human Anatomy and Histoembryology at the Medical School of Nantong University during January to April 2008. SETTING: Department of Anatomy, Institute of Neurobiology, Jiangsu Province Key Laboratory of Neural Regeneration, Laboratory of Image Engineering. MATERIALS: A human lumbar spinal cord segment from fresh autopsy material of an adult male. METHODS: After 4% paraformaldehyde fixation for three days, serial sections of the lumbar spinal cord were cut on a Leica cryostat and mounted on slides in sequence, with eight sections aligned separately on each slide. All sections were stained with Luxol Fast Blue to reveal myelin sheaths. After gradient dehydration and clearing, the stained slides were coverslipped. Sections were observed and images recorded under a light microscope using a digital camera. Six images were acquired at x25 magnification and automatically stitched into a complete section image. After all serial images were obtained, 96 complete serial images of the human lumbar cord segment were automatically processed with "Curves", "Autocontrast", "Gray scale 8 bit", "Invert", "Image resize to 50%" steps using Photoshop 7.0 software. All images were added in order into 3D-DOCTOR 4.0 software as a stack, where serial images were automatically realigned with neighboring images and semi-automatically segmented for white matter and gray matter. Finally, simple surface and volume reconstruction were completed on a personal computer. The reconstructed human lumbar spinal cord segment was interactively observed, cut, and measured. MAIN OUTCOME MEASURES: The reconstructed human lumbar spinal cord segment. RESULTS: Compared with serial images obtained from other image modalities, such as CT, MRI, and macrosections from The Visual Human Project database, the Luxol Fast Blue stained histological serial section images exhibited higher resolution and contrast between gray and white matter. Image processing and 3D reconstruction steps were semi-automatically performed with related software. The 3D reconstructed human lumbar cord segment were observed, cut, and measured on a PC. CONCLUSION: A semi-automatically computerized method, based on histological serial sections, is an effective way to 3D-reconstruct the human spinal cord.
基金The project supported by the National Natural Science Foundation of China (50009004)
文摘The calculation of flow and sediment transport is one of the most important tasks in river engineering. The task is particularly difficult because a number of complex physical phenomena should be accounted for more realistically in a model with a predictive power. Three-dimensional calculations of river flow and suspended sediment transport are performed in this paper with application in the Three Gorges Reservoir in the Yangtze River. A period of 76 years after the dam is built is simulated and the results are compared with laboratory measurements obtained by Tsinghua University whereby the model is verified and calibrated. Generally speaking, the calculated results agree well with the experiments, demonstrating that the present model can be used for flow and sediment transport prediction in rivers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505114 and 10975099)the Program for Professor of Special Appointment(Orientational Scholar)at Shanghai Institutions of Higher Learning(Grant Nos.QD02015016 and DUSST02)+1 种基金the Shanghai Project for Construction of Discipline Peaks,the Natural Science Foundation of Guangxi Zhuang Guangxi Zhuang Autonomous Region(Grant No.2016GXNSFDA380031)the Fundamental Ability Enhancement Project for Young and Middle-aged University Teachers in Guangxi Zhuang Autonomous Region(Grant No.2017KY0859)
文摘Projection is a widely used method in bipartite networks. However, each projection has a specific application scenario and differs in the forms of mapping for bipartite networks. In this paper, inspired by the network-based information exchange dynamics, we propose a uniform framework of projection. Subsequently, an information exchange rate projection based on the nature of community structures of a network (named IERCP) is designed to detect community structures of bipartite networks. Results from the synthetic and real-world networks show that the IERCP algorithm has higher performance compared with the other projection methods. It suggests that the IERCP may extract more information hidden in bipartite networks and minimize information loss.
基金This project was financially supported by the National Committee of Science and Technology Grants/903-85-08-05
文摘A three-dimensional, first order turbulence closure, thermal diffusion model is described in this paper. The governing equations consist of an equation of continuity, three components of momentum, conservation equations for salt, temperature and subgridscale energy, and an equation of state. In the model, according to the hypothesis of Kolmogorov and Prandtl, the viscosity coefficient of turbulent flow of homogeneous fluid is related to the local turbulent energy, and the horizontal and vertical exchange coefficients of mass, heat and momentum are computed with the introduction of subgridscale turbulence energy. The governing equations are solved by finite difference techniques. This model is applied to the Jiaozhou bay to predict thermal pollution by the Huangdao power plant. An instantaneous tidal current field is computed, then the distribution of temperature increment is predicted, and finally the effect of wind stress on thermal discharge is discussed.
基金funding from the National Natural Science Foundation of China(Grant Nos.62375078 and 12002197)the Youth Talent Launching Program of Shanghai University+2 种基金the General Science Foundation of Henan Province(Grant No.222300420427)the Key Research Project Plan for Higher Education Institutions in Henan Province(Grant No.24ZX011)the National Key Laboratory of Ship Structural Safety
文摘Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera synchronization,limiting the use of affordable imaging devices and their consumer applications.In this work,we introduce an asynchronous structured light imaging approach based on generative deep neural networks to relax the synchronization constraint,accomplishing the challenges of fringe pattern aliasing,without relying on any a priori constraint of the projection system.To overcome this need,we propose a generative deep neural network with U-Net-like encoder-decoder architecture to learn the underlying fringe features directly by exploring the intrinsic prior principles in the fringe pattern aliasing.We train within an adversarial learning framework and supervise the network training via a statisticsinformed loss function.We demonstrate that by evaluating the performance on fields of intensity,phase,and 3D reconstruction.It is shown that the trained network can separate aliased fringe patterns for producing comparable results with the synchronous one:the absolute error is no greater than 8μm,and the standard deviation does not exceed 3μm.Evaluation results on multiple objects and pattern types show it could be generalized for any asynchronous structured light scene.
基金supported by the School of Mechanical,Institute of Engineering,Suranaree University of Technology (Thailand),Mechanical and Process System Engineering Program,and Vithedbundit Scholarship,Institute of Engineering,Suranaree University of Technology (Thailand)。
文摘This study investigated the effects of zigzag-flow channel bending angle in printed circuit heat exchangers(PCHEs) using a computational fluid dynamics method with ANSYS-FLUENT simulation.The three-dimensional model of PCHE with a 15° curved,zigzag channel was conducted for preliminary validation.The comparisons between the CFD simulation results and the experimental data showed good agreement with some discrepancies in the heat transfer and pressure drop results.In addition,different bending angle configurations(0°,3° to 30°) of zigzag channels were analyzed to obtain better thermal-hydraulic performance of the zigzag channel PCHE under different inlet mass flow rates.The criteria of heat transfer and frictional factor were applied to evaluate the thermal-hydraulic performance of the PCHE.The results showed that the 6° and 9°bending channel provided good thermal-hydraulic performance.New correlations were developed using the 6°and 9° bending channel angles in PCHE designs to predict the Nusselt number and friction factor.