In this article, the risk process perturbed by diffusion under interest force is considered, the continuity and twice continuous differentiability for Фδ(u,w) are discussed,the Feller expression and the integro-di...In this article, the risk process perturbed by diffusion under interest force is considered, the continuity and twice continuous differentiability for Фδ(u,w) are discussed,the Feller expression and the integro-differential equation satisfied by Фδ (u ,w) are derived. Finally, the decomposition of Фδ(u,w) is discussed, and some properties of each decomposed part of Фδ(u,w) are obtained. The results can be reduced to some ones in Gerber and Landry's,Tsai and Willmot's, and Wang's works by letting parameter δ and (or) a be zero.展开更多
The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected...The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected value and a second-order differential equation for the Laplace transform of the expected value are derived. In addition, the paper will present the recursive algorithm for the joint distribution of the surplus immediately before ruin and the deficit at ruin. Finally, by the differential equation, the defective renewal equation and the explicit expression for the expected value are given in the interest-free case.展开更多
We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iterati...We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iteration mothed can be used to compute the values of expected discounted dividends until ruin and the new penalty function. Applying the new function and the recursion method proposed in Section 5, we obtain the arbitrary moments of discounted dividend payments until ruin.展开更多
This paper considers the expected discounted penalty function Φ(u) for the perturbed compound Poisson risk model with stochastic return on investments. After presenting an integro-differential equation that the exp...This paper considers the expected discounted penalty function Φ(u) for the perturbed compound Poisson risk model with stochastic return on investments. After presenting an integro-differential equation that the expected discounted penalty function satisfies, the paper derives the closed form solution by constructing an identical equation. The exact expression for Φ (0) is given using the Laplace transform technique when interest rate is constant. Applications of the results are given to the ruin probability and moments of the deficit at ruin.展开更多
In this paper,we study a general Lévy risk process with positive and negative jumps.A renewal equation and an infinite series expression are obtained for the expected discounted penalty function of this risk mode...In this paper,we study a general Lévy risk process with positive and negative jumps.A renewal equation and an infinite series expression are obtained for the expected discounted penalty function of this risk model.We also examine some asymptotic behaviors for the ruin probability as the initial capital tends to infinity.展开更多
We consider that the reserve of an insurance company follows a renewal risk process with interest and dividend. For this risk process, we derive integral equations and exact infinite series expressions for the Cerber-...We consider that the reserve of an insurance company follows a renewal risk process with interest and dividend. For this risk process, we derive integral equations and exact infinite series expressions for the Cerber-Shiu discounted penalty function. Then we give lower and upper bounds for the ruin probability. Finally, we present exact expressions for the ruin probability in a special case of renewal risk processes.展开更多
In this paper, we investigate the Gerber-Shiu discounted penalty function for the surplus process described by a piecewise deterministic Markov process (PDMP). We derive an integral equation for the Gerber-Shiu disc...In this paper, we investigate the Gerber-Shiu discounted penalty function for the surplus process described by a piecewise deterministic Markov process (PDMP). We derive an integral equation for the Gerber-Shiu discounted penalty function, and obtain the exact solution when the initial surplus is zero. Dickson formulae are also generalized to the present surplus process.展开更多
In this paper, we consider a Gerber-Shiu discounted penalty function in Sparre Andersen risk process in which claim inter-arrival times have a phase-type (2) distribution, a distribution with a density satisfying a ...In this paper, we consider a Gerber-Shiu discounted penalty function in Sparre Andersen risk process in which claim inter-arrival times have a phase-type (2) distribution, a distribution with a density satisfying a second order linear differential equation. By conditioning on the time and the amount of the first claim, we derive a Laplace transform of the Gerber-Shiu discounted penalty function, and then we consider the joint density function of the surplus prior to ruin and the deficit at ruin and some ruin related problems. Finally, we give a numerical example to illustrate the application of the results.展开更多
文摘In this article, the risk process perturbed by diffusion under interest force is considered, the continuity and twice continuous differentiability for Фδ(u,w) are discussed,the Feller expression and the integro-differential equation satisfied by Фδ (u ,w) are derived. Finally, the decomposition of Фδ(u,w) is discussed, and some properties of each decomposed part of Фδ(u,w) are obtained. The results can be reduced to some ones in Gerber and Landry's,Tsai and Willmot's, and Wang's works by letting parameter δ and (or) a be zero.
基金supported by the National Natural science Foundation of china(70271069)
文摘The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected value and a second-order differential equation for the Laplace transform of the expected value are derived. In addition, the paper will present the recursive algorithm for the joint distribution of the surplus immediately before ruin and the deficit at ruin. Finally, by the differential equation, the defective renewal equation and the explicit expression for the expected value are given in the interest-free case.
文摘We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iteration mothed can be used to compute the values of expected discounted dividends until ruin and the new penalty function. Applying the new function and the recursion method proposed in Section 5, we obtain the arbitrary moments of discounted dividend payments until ruin.
基金Supported by Key Project of National Social Science Fund (Grant No.06&ZD039)"Mathematics+X" Project of DUT
文摘This paper considers the expected discounted penalty function Φ(u) for the perturbed compound Poisson risk model with stochastic return on investments. After presenting an integro-differential equation that the expected discounted penalty function satisfies, the paper derives the closed form solution by constructing an identical equation. The exact expression for Φ (0) is given using the Laplace transform technique when interest rate is constant. Applications of the results are given to the ruin probability and moments of the deficit at ruin.
基金Supported by the National Natural Science Foundation of China (No.10771119)the Research Fund forthe Doctoral Program of Higher Education of China (No.20093705110002)
文摘In this paper,we study a general Lévy risk process with positive and negative jumps.A renewal equation and an infinite series expression are obtained for the expected discounted penalty function of this risk model.We also examine some asymptotic behaviors for the ruin probability as the initial capital tends to infinity.
文摘We consider that the reserve of an insurance company follows a renewal risk process with interest and dividend. For this risk process, we derive integral equations and exact infinite series expressions for the Cerber-Shiu discounted penalty function. Then we give lower and upper bounds for the ruin probability. Finally, we present exact expressions for the ruin probability in a special case of renewal risk processes.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10926161, 10901086, 10871102)National Basic Research Program of China (973 Program) 2007CB814905the Research Fund for the Doctorial Program of Higher Education
文摘In this paper, we investigate the Gerber-Shiu discounted penalty function for the surplus process described by a piecewise deterministic Markov process (PDMP). We derive an integral equation for the Gerber-Shiu discounted penalty function, and obtain the exact solution when the initial surplus is zero. Dickson formulae are also generalized to the present surplus process.
文摘In this paper, we consider a Gerber-Shiu discounted penalty function in Sparre Andersen risk process in which claim inter-arrival times have a phase-type (2) distribution, a distribution with a density satisfying a second order linear differential equation. By conditioning on the time and the amount of the first claim, we derive a Laplace transform of the Gerber-Shiu discounted penalty function, and then we consider the joint density function of the surplus prior to ruin and the deficit at ruin and some ruin related problems. Finally, we give a numerical example to illustrate the application of the results.