In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The trav...In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method.展开更多
In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized...In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized Camassa-Holm equation. It is shown that this class gives compactons, solitary wave solutions, solitons, and periodic wave solutions. The change of the physical structure of the solutions is caused by variation of the exponents and the coefficients of the derivatives.展开更多
In this paper,by improving some procedure of extended tanh-function method,some new exact solutions to the integrable Broer-Kaup equations in(2 + 1)-dimensional spaces are obtained,which include soliton-like solutions...In this paper,by improving some procedure of extended tanh-function method,some new exact solutions to the integrable Broer-Kaup equations in(2 + 1)-dimensional spaces are obtained,which include soliton-like solutions,solitary wave solutions,trigonometric function solutions,and rational solutions.展开更多
Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By fur...Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By further study, we find that these variable separation solutions are seemingly independent of but actually dependent on each other. Based on the variable separation solution and by choosing appropriate functions, some novel and interesting interactions between special solitons, such as bell-like compacton, peakon-like compacton and compacton-like semifoldon, are investigated.展开更多
Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equ...Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equations.By using the metho d,Ito's 5th order and 7th order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found.With modulus m→1 or m→0,these solutions degenerate into corresponding solitary wave s olutions,shock wave solutions and trigonometric function solutions.展开更多
We construct, through a further extension of the tanh-function method, the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction. The BECs are trapped in a potential comprising the ...We construct, through a further extension of the tanh-function method, the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction. The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields. The exact solutions obtained include soliton solutions, such as kink and antikink as well as bright, dark, multisolitonic modulated waves. We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.展开更多
基金Supported by National Natural Science Foundation of China under Grant No. 10671172
文摘In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method.
文摘In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized Camassa-Holm equation. It is shown that this class gives compactons, solitary wave solutions, solitons, and periodic wave solutions. The change of the physical structure of the solutions is caused by variation of the exponents and the coefficients of the derivatives.
基金supported by National Natural Science Fundation of china(11071159)Scientific Research Innovation Project of Shanghai Education Committee(09YZ239)the College Science Research Project of Inner Mongolia(N Jzy08180)
文摘In this paper,by improving some procedure of extended tanh-function method,some new exact solutions to the integrable Broer-Kaup equations in(2 + 1)-dimensional spaces are obtained,which include soliton-like solutions,solitary wave solutions,trigonometric function solutions,and rational solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672147) and Natural Science Foundation of Zhejiang Forestry University, China (Grant No 2006FR035). Acknowledgments The authors are indebted to Professor Zhang J F for his helpful suggestions and fruitful discussions, and also express their sincere thanks to the editors and the anonymous referees for their constructive suggestions and kind help.
文摘Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By further study, we find that these variable separation solutions are seemingly independent of but actually dependent on each other. Based on the variable separation solution and by choosing appropriate functions, some novel and interesting interactions between special solitons, such as bell-like compacton, peakon-like compacton and compacton-like semifoldon, are investigated.
基金Supported by the Natural Science Foundation of Zhejiang Province (1 0 2 0 37)
文摘Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equations.By using the metho d,Ito's 5th order and 7th order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found.With modulus m→1 or m→0,these solutions degenerate into corresponding solitary wave s olutions,shock wave solutions and trigonometric function solutions.
文摘We construct, through a further extension of the tanh-function method, the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction. The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields. The exact solutions obtained include soliton solutions, such as kink and antikink as well as bright, dark, multisolitonic modulated waves. We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.