Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater...Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.展开更多
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different...The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.展开更多
The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational develo...The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.展开更多
The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the p...The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.展开更多
Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security.In this study,we collected a total of 164 water samples in the wester...Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security.In this study,we collected a total of 164 water samples in the western region of the Altay Mountains,China,in 2021.We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions(including F-,Cl-,NO_(3)-,SO_(4)^(2-),Li+,Na+,NH4+,K+,Mg^(2+),and Ca^(2+))present in river water,as well as to identify the factors influencing these variations.Additionally,we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids,soluble sodium percentage,sodium adsorption ratio,and total hardness.Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00.The mean ion concentration was ranked as follows:Ca^(2+)>SO_(4)^(2-)>Na+>NO_(3)->Mg^(2+)>K+>Cl->F->NH_(4)+>Li+.Ca^(2+),SO_(4)^(2-),Na+,and NO_(3)-occupied 83%of the total ion concentration.In addition,compared with other seasons,the spatial variation of the ion concentration in spring was obvious.An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering.The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-,NO_(3)-,SO_(4)^(2-),Ca^(2+),and Na+.Overall,river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking.This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.展开更多
China’s first Mars exploration mission,Tianwen-1,successfully landed in southern Utopia Planitia on Mars on May 15,2021.This work presents a detailed investigation of the geologic context of the landing area surface ...China’s first Mars exploration mission,Tianwen-1,successfully landed in southern Utopia Planitia on Mars on May 15,2021.This work presents a detailed investigation of the geologic context of the landing area surface for this mission based on orbital remotesensing data.We constructed a geomorphologic map for the Tianwen-1 landing area.Results of our detailed geomorphologic map show several major landforms within the landing area,including rampart craters,mesas,troughs,cones,and ridges.Analysis of materials on the landing area surface indicates that most of the landing area is covered by Martian dust.Transverse aeolian ridges are widely distributed within the landing area,indicating the surface contexts were(and still are)modified by regional winds.In addition,a crater counting analysis indicates the landing area has an absolute model age of~3.3 Ga and that a later resurfacing event occurred at~1.6 Ga.Finally,we outline four formational scenarios to test the formation mechanisms for the geomorphologic features on the landing area surface.The most likely interpretation to explain the existence of the observed surface features can be summarized as follows:A thermal influence may have played an important role in the formation of the surface geomorphologic features;thus,igneous-related processes may have occurred in the landing area.Water ice may also have been involved in the construction of the primordial surface configuration.Subsequent resurfacing events and aeolian processes buried and modified the primordial surface.展开更多
Estimating the impact of mountain landscape on hydrology or water balance is essential for the sus- tainable development strategies of water resources. Specifically, understanding how the change of each landscape infl...Estimating the impact of mountain landscape on hydrology or water balance is essential for the sus- tainable development strategies of water resources. Specifically, understanding how the change of each landscape influences hydrological components will greatly improve the predictability of hydrological responses to mountain landscape changes and thus can help the government make sounder decisions. In the paper, we used the VIC (Variable Infiltration Capacity) model to conduct hydrological modeling in the upper Heihe River watershed, along with a frozen-soil module and a glacier melting module to improve the simulation. The improved model performed satisfactorily. We concluded that there are differences in the runoff generation of mountain landscape both in space and time. About 50% of the total runoff at the catchment outlet were generated in mid-mountain zone (2,900-4,000 m asl), and water was mainly consumed in low mountain region (1,700-2,900 m asl) because of the higher requirements of trees and grasses. The runoff coefficient was 0.37 in the upper Heihe River watershed. Barren landscape produced the largest runoff yields (52.46% of the total runoff) in the upper Heihe River watershed, fol- lowed by grassland (34.15%), shrub (9.02%), glacier (3.57%), and forest (0.49%). In order to simulate the impact of landscape change on hydrological components, three landscape change scenarios were designed in the study. Scenario 1, 2 and 3 were to convert all shady slope landscapes at 2,000-3,300 m, 2,000-3,700 m, and 2,000-4,000 m asl respectively to forest lands, with forest coverage rate increased to 12.4%, 28.5% and 42.0%, respectively. The runoff at the catchment outlet correspondingly declined by 3.5%, 13.1% and 24.2% under the three scenarios. The forest landscape is very important in water conservation as it reduced the flood peak and increased the base flow. The mountains as "water towers" play important roles in water resources generation and the impact of mountain landscapes on hydrology is significant.展开更多
The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the ...The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September.展开更多
Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewat...Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewater crisis in the Northern Slope of Tianshan Mountains(NSTM) faces dual challenges because water demandsforfast-growing urban areas have put heavy pressure on water resources. The mountain-oasis-desert system featuresglacier-fed rivers that sustain intensive water use in the oasis and end in the desert as fragile terminal lakes.The complex balance between water conservation and economic development is subtle. This paper investigateschanges in hydroclimatic variables and water security-related issues on the NSTM. The spatiotemporal variationsin glaciers, climatic variables, rivers, lakes and reservoirs, groundwater, surface water, human water use, andstreamflow were analyzed for the past four decades. The results show that temperature in the NSTM exhibitedan apparent upward trend with a more significant warming rate in the higher altitude regions. Glacier massloss and shrinkage was strong. The average annual streamflow increased from 1980-1989 to 2006–2011 at mosthydrological stations. The monthly dynamics of surface water area showed notable variability at both inter-annual and seasonal scales, revealing the impacts of both natural and anthropogenic drivers on surface wateravailability in the region. The terrestrial water storage anomaly showed a decreasing trend, which might berelated to groundwater pumping for irrigation. Human water use for agriculture and industry grew with theincrease in cultivated land area and gross domestic product (GDP). The increased agricultural water use wasstrongly associated with the expansion of oases. It is unclear whether water availability would remain high underfuture climatic and hydrological uncertainties, posing challenges to water management. In the context of rapidurban growth and climate change, balancing water for humans and nature is vital in achieving the SustainableDevelopment Goals (SDGs) in NSTM. This study provides a baseline understanding of the interplay among water,climate change, and socio-economic development in NSTM. It would also shed light on wise water managementunder environmental changes for other rapidly developing mountain-oasis-desert systems worldwide.展开更多
The soil and water conservation practices of ecological restoration(ER),fish scale pit(FP),furrow and ridge tillage across the slope(FR),shrub strips(SS),and vegetation-covered ridge(VR)are characteristic of the Jixin...The soil and water conservation practices of ecological restoration(ER),fish scale pit(FP),furrow and ridge tillage across the slope(FR),shrub strips(SS),and vegetation-covered ridge(VR)are characteristic of the Jixing small watershed of the low mountain and hilly region of Jilin Province,Northeast China.This study aims to elucidate the effects of soil and water conservation practices on soil conditions after the short-term implementation of practices.Soil samples were collected from five soil and water conservation sites(ER,FP,FR,SS,and VR)and two controls(BL and CT)to investigate their properties.To evaluate the influence of soil and water conservation practices on soil quality,an integrated quantitative index,soil quality index(QI),was developed to compare the soil quality under the different soil and water conservation practices.The results show that not all soil and water conservation practices can improve the soil conditions and not all soil properties,especially soil organic carbon(SOC),can be recovered under soil and water conservation practice in short-term.Moreover,the QI in the five soil and water conservation practices and two controls was in the following order:ER>VR>BL>FR>CT>SS>FP.ER exhibited a higher soil quality value on a slope scale.In the low mountain and hilly region of Northeast China,ER is a better choice than the conversion of farmlands to planted grasslands and woodlands early in the soil and water conservation program.展开更多
Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these stu...Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.展开更多
The Mesta-Nestos river basin in Bulgaria and Greece is a case study for transboundary decision-making support in south-eastern Europe and a show-case for the development of methodologies and information-gathering for ...The Mesta-Nestos river basin in Bulgaria and Greece is a case study for transboundary decision-making support in south-eastern Europe and a show-case for the development of methodologies and information-gathering for the integrated regional planning of water resources. Land-use conflicts in this water-scarce region cover a wide spectrum of activities like agricultural irrigation, drinking water production, diversions for industrial water, and risk of pollution from mining, to name a few examples. Measurements of the water quality were carried out in the upper basin. Results will be illustrated by the example of the environmental situation in the alpine region of the Pirin National Park as well as in the Razlog Basin with a stronger anthropogenic impact and pollution around a former uranium mine near the village of Elesnica. The social and economic development of this transboundary region is a recently established priority for mean an increase in water usage the water resources if regional the future. It will and more stress for impacts of global climate change are verified. Problem-focused management of the catchment area as a whole on the basis of proved geo-data sets is needed for the future.展开更多
Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on grou...Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on groundwater recharge in arid regions,and quantitative assessment of the impact is key to sustainable groundwater resources management.In this study,the changes of groundwater recharge after the conversion of natural lands to croplands were investigated and compared in inland and arid region,i.e.,the northern slope of the Tianshan Mountain.Stable isotopes suggest that soil water in topsoil(<2 m)has experienced stronger evaporation under natural lands than croplands,and then moves downward as a piston flow.Recharge was estimated by the tracer-based mass balance method,i.e.,chloride and sulfate.Recharge rates under natural conditions estimated by the chloride mass balance(CMB)method were estimated to be 0.07 mm/a in deserts and 0.4 mm/a in oases.In contrast,the estimated groundwater recharge ranged from 61.2 mm/a to 44.8 mm/a in croplands,indicating that groundwater recharge would increase significantly after land changes from natural lands to irrigated croplands in arid regions.Recharge estimated by the sulfate mass balance method is consistent with that from the CMB method,indicating that sulfate is also a good tracer capable of estimating groundwater recharge.展开更多
Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing wit...Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing with the adverse effects of climate change.In this study,we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains,China.By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions,Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,and isotope mass balance model,we obtained the following results.(1)The Eurasia,Black Sea,and Caspian Sea are the major sources of water vapor.(2)The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands(except in spring),while the contribution of plant transpiration to precipitation in forests(5.35%)is higher than that in grasslands(3.79%)in summer.(3)The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation;meanwhile,the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors.Overall,this work will prove beneficial in quantifying the effect of climate change on local water cycles.展开更多
In the 18^(th)century,British gardens began to transform from a classical to a natural landscape style.During this period,they were influenced by the economy,local nature,as well as foreign cultures.The 18^(th)century...In the 18^(th)century,British gardens began to transform from a classical to a natural landscape style.During this period,they were influenced by the economy,local nature,as well as foreign cultures.The 18^(th)century was the golden period of cultural exchange between China and the West which gave Britain the opportunity to absorb the cultures of Chinese classical gardens.British gardeners had used various elements of Chinese classical gardens as their point of reference which promoted the development of British natural landscape gardens.展开更多
-Rock glaciers are developed at permafrost areas of periglacial environment in Tianshan Mountains [7,17]. Based on field surveying andair-photo interprestation, the paper discusses the shape, characteristics of supply...-Rock glaciers are developed at permafrost areas of periglacial environment in Tianshan Mountains [7,17]. Based on field surveying andair-photo interprestation, the paper discusses the shape, characteristics of supply area, formation conditions and environmental differentiations of rockglaciers at head area of Urmqi River (43°05'-43°08' N, 86°48’-86°53E) inKalawuchen Range and the head areas of Toudao River and Danangou River (43°30’-43°50’N, 85°00-85°30’E) in Yilanhabierga Rangu at ShawanCounty. Formation conditions and morphological characteristics of rockglaciers are studies in terms of topographic conditions, climate, compositionand age.展开更多
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni...Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan展开更多
The factor of human project activity is often the immediate cause resulting in soil and water loss. The Baoji-Lanzhou second railway in construction is an example. The soil and water loss law caused by earth and stone...The factor of human project activity is often the immediate cause resulting in soil and water loss. The Baoji-Lanzhou second railway in construction is an example. The soil and water loss law caused by earth and stone mountain railway engineering construction in the northwestern China is studied systematically and that caused possibly by the road bed project, the road moat project, the field project, the tunnel project and the service road project in construction is probed. At the same time, the type, t...展开更多
In view of the fact that water resource had been taken as the focus of tourism development in Jiangsu Province, the paper had analyzed superior features of water tourist resource in Jiangsu Province, and summarized ge...In view of the fact that water resource had been taken as the focus of tourism development in Jiangsu Province, the paper had analyzed superior features of water tourist resource in Jiangsu Province, and summarized geographic features and plentiful water resources in Jiangsu. It emphasized that water resource was large in amount and river flew through most cities; that water resource was widely distributed and national AAAAA and AAAA scenic areas (spots) with water resource spread all over the province; that water resource was diversified in types and it could be divided into reaches, natural lakes and pools, springs, waterfalls, river mouths and lake surfaces; that water tourist resource was high in taste, strong in function and high in overall quality; and that water resource played a distinct role in landscape structure, which could not only constitute the main feature in isolation, but also lend people the sense of beauty through multiple landscaping factors. Based on the comprehensive evaluation on superior features of water resource in Jiangsu Province, it had proposed practical value for water tourism development, which was providing reference for scientific tourism planning, offering tourists abundant tourist products, shaping tourism brand image with distinct personality, creating a new growth pole and enhancing the protection of water resource.展开更多
Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing ...Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.展开更多
基金This work was funded by the Science and Technology Program of Gansu Province(23ZDFA017,22ZD6FA005)the Third Xinjiang Scientific Expedition Program(2022xjkk0802).
文摘Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.
基金funded by the National Natural Science Foundation of China(32360321)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2023AAC03046,2023AAC02018)the Ningxia Key Research and Development Project(2021BEG02011).
文摘The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.
基金financially supported by the Geological Survey Project of China Geological Survey(DD20230077,DD20230456,DD20230424)。
文摘The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.
基金financially supported by the National Key Research and Development Program Project (2017YFC0404304)the National Natural Science Foundation of China (41361005)。
文摘The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.
基金supported by the State Key Laboratory of Cryospheric Science of China(SKLCS-ZZ-2022)the National Key Research and Development Research and Development Program of China(2020YFF0304400)the Third Scientific Expedition in Xinjiang Uygur Autonomous Region of China(2022xjkk0701).
文摘Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security.In this study,we collected a total of 164 water samples in the western region of the Altay Mountains,China,in 2021.We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions(including F-,Cl-,NO_(3)-,SO_(4)^(2-),Li+,Na+,NH4+,K+,Mg^(2+),and Ca^(2+))present in river water,as well as to identify the factors influencing these variations.Additionally,we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids,soluble sodium percentage,sodium adsorption ratio,and total hardness.Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00.The mean ion concentration was ranked as follows:Ca^(2+)>SO_(4)^(2-)>Na+>NO_(3)->Mg^(2+)>K+>Cl->F->NH_(4)+>Li+.Ca^(2+),SO_(4)^(2-),Na+,and NO_(3)-occupied 83%of the total ion concentration.In addition,compared with other seasons,the spatial variation of the ion concentration in spring was obvious.An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering.The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-,NO_(3)-,SO_(4)^(2-),Ca^(2+),and Na+.Overall,river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking.This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC001)the National Natural Science Foundation(Grant No.11803056).
文摘China’s first Mars exploration mission,Tianwen-1,successfully landed in southern Utopia Planitia on Mars on May 15,2021.This work presents a detailed investigation of the geologic context of the landing area surface for this mission based on orbital remotesensing data.We constructed a geomorphologic map for the Tianwen-1 landing area.Results of our detailed geomorphologic map show several major landforms within the landing area,including rampart craters,mesas,troughs,cones,and ridges.Analysis of materials on the landing area surface indicates that most of the landing area is covered by Martian dust.Transverse aeolian ridges are widely distributed within the landing area,indicating the surface contexts were(and still are)modified by regional winds.In addition,a crater counting analysis indicates the landing area has an absolute model age of~3.3 Ga and that a later resurfacing event occurred at~1.6 Ga.Finally,we outline four formational scenarios to test the formation mechanisms for the geomorphologic features on the landing area surface.The most likely interpretation to explain the existence of the observed surface features can be summarized as follows:A thermal influence may have played an important role in the formation of the surface geomorphologic features;thus,igneous-related processes may have occurred in the landing area.Water ice may also have been involved in the construction of the primordial surface configuration.Subsequent resurfacing events and aeolian processes buried and modified the primordial surface.
基金funded by the National Natural Science Foundation of China (41130638)the key innovation project of the Chinese Academy of Sciences (KZCX2-YW-QN310)the National Science and Technology Support Program (2013BAB05B03)
文摘Estimating the impact of mountain landscape on hydrology or water balance is essential for the sus- tainable development strategies of water resources. Specifically, understanding how the change of each landscape influences hydrological components will greatly improve the predictability of hydrological responses to mountain landscape changes and thus can help the government make sounder decisions. In the paper, we used the VIC (Variable Infiltration Capacity) model to conduct hydrological modeling in the upper Heihe River watershed, along with a frozen-soil module and a glacier melting module to improve the simulation. The improved model performed satisfactorily. We concluded that there are differences in the runoff generation of mountain landscape both in space and time. About 50% of the total runoff at the catchment outlet were generated in mid-mountain zone (2,900-4,000 m asl), and water was mainly consumed in low mountain region (1,700-2,900 m asl) because of the higher requirements of trees and grasses. The runoff coefficient was 0.37 in the upper Heihe River watershed. Barren landscape produced the largest runoff yields (52.46% of the total runoff) in the upper Heihe River watershed, fol- lowed by grassland (34.15%), shrub (9.02%), glacier (3.57%), and forest (0.49%). In order to simulate the impact of landscape change on hydrological components, three landscape change scenarios were designed in the study. Scenario 1, 2 and 3 were to convert all shady slope landscapes at 2,000-3,300 m, 2,000-3,700 m, and 2,000-4,000 m asl respectively to forest lands, with forest coverage rate increased to 12.4%, 28.5% and 42.0%, respectively. The runoff at the catchment outlet correspondingly declined by 3.5%, 13.1% and 24.2% under the three scenarios. The forest landscape is very important in water conservation as it reduced the flood peak and increased the base flow. The mountains as "water towers" play important roles in water resources generation and the impact of mountain landscapes on hydrology is significant.
基金supported by the National Natural Science Foundation of China(41240002,91125025,91225302,Y211121001)the National Science and Technology Support Projects(2011BAC07B05)
文摘The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September.
基金This work is supported by the Third Xinjiang Scientific Expedition Program(Grant No.2021xjkk0800).Thanks to Professor Lu Zhang for his valuable comments.
文摘Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewater crisis in the Northern Slope of Tianshan Mountains(NSTM) faces dual challenges because water demandsforfast-growing urban areas have put heavy pressure on water resources. The mountain-oasis-desert system featuresglacier-fed rivers that sustain intensive water use in the oasis and end in the desert as fragile terminal lakes.The complex balance between water conservation and economic development is subtle. This paper investigateschanges in hydroclimatic variables and water security-related issues on the NSTM. The spatiotemporal variationsin glaciers, climatic variables, rivers, lakes and reservoirs, groundwater, surface water, human water use, andstreamflow were analyzed for the past four decades. The results show that temperature in the NSTM exhibitedan apparent upward trend with a more significant warming rate in the higher altitude regions. Glacier massloss and shrinkage was strong. The average annual streamflow increased from 1980-1989 to 2006–2011 at mosthydrological stations. The monthly dynamics of surface water area showed notable variability at both inter-annual and seasonal scales, revealing the impacts of both natural and anthropogenic drivers on surface wateravailability in the region. The terrestrial water storage anomaly showed a decreasing trend, which might berelated to groundwater pumping for irrigation. Human water use for agriculture and industry grew with theincrease in cultivated land area and gross domestic product (GDP). The increased agricultural water use wasstrongly associated with the expansion of oases. It is unclear whether water availability would remain high underfuture climatic and hydrological uncertainties, posing challenges to water management. In the context of rapidurban growth and climate change, balancing water for humans and nature is vital in achieving the SustainableDevelopment Goals (SDGs) in NSTM. This study provides a baseline understanding of the interplay among water,climate change, and socio-economic development in NSTM. It would also shed light on wise water managementunder environmental changes for other rapidly developing mountain-oasis-desert systems worldwide.
基金Under the auspices of Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(No.10501-1210)National Natural Science Foundation of China(No.31101606)+1 种基金Basic Scientific Research Operating Expenses of Jilin University(No.200903377)National Key Projects in National Science&Technology Program during the 12th Five-Year Plan Period of China(No.2011BAD16B10-3,2012BAD04B02-3)
文摘The soil and water conservation practices of ecological restoration(ER),fish scale pit(FP),furrow and ridge tillage across the slope(FR),shrub strips(SS),and vegetation-covered ridge(VR)are characteristic of the Jixing small watershed of the low mountain and hilly region of Jilin Province,Northeast China.This study aims to elucidate the effects of soil and water conservation practices on soil conditions after the short-term implementation of practices.Soil samples were collected from five soil and water conservation sites(ER,FP,FR,SS,and VR)and two controls(BL and CT)to investigate their properties.To evaluate the influence of soil and water conservation practices on soil quality,an integrated quantitative index,soil quality index(QI),was developed to compare the soil quality under the different soil and water conservation practices.The results show that not all soil and water conservation practices can improve the soil conditions and not all soil properties,especially soil organic carbon(SOC),can be recovered under soil and water conservation practice in short-term.Moreover,the QI in the five soil and water conservation practices and two controls was in the following order:ER>VR>BL>FR>CT>SS>FP.ER exhibited a higher soil quality value on a slope scale.In the low mountain and hilly region of Northeast China,ER is a better choice than the conversion of farmlands to planted grasslands and woodlands early in the soil and water conservation program.
基金funded by the Funds for Creative Research Groups of China (41121001)the National Basic Research Program (2013CBA01801)+3 种基金the National Natural Science Foundation of China (41301069, 41471058)the State Key Laboratory of Cryospheric Science foundation, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (SKLCS-ZZ-2012-01-01)West Light Program for Talent Cultivation of the Chinese Academy of Sciencesthe Special Financial Grant from the China Postdoctoral Science Foundation ( 2014T70948)
文摘Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.
文摘The Mesta-Nestos river basin in Bulgaria and Greece is a case study for transboundary decision-making support in south-eastern Europe and a show-case for the development of methodologies and information-gathering for the integrated regional planning of water resources. Land-use conflicts in this water-scarce region cover a wide spectrum of activities like agricultural irrigation, drinking water production, diversions for industrial water, and risk of pollution from mining, to name a few examples. Measurements of the water quality were carried out in the upper basin. Results will be illustrated by the example of the environmental situation in the alpine region of the Pirin National Park as well as in the Razlog Basin with a stronger anthropogenic impact and pollution around a former uranium mine near the village of Elesnica. The social and economic development of this transboundary region is a recently established priority for mean an increase in water usage the water resources if regional the future. It will and more stress for impacts of global climate change are verified. Problem-focused management of the catchment area as a whole on the basis of proved geo-data sets is needed for the future.
基金The research was funded by Innovation Capability Support Program of Shaanxi(2019TD-040)China National Natural Science Foundation(41472228,41877199)+1 种基金Groundwater and Ecology Security in the North Slope Economic Belt of the Tianshan Mountain(201511047)Key Laboratory of Groundwater and Ecology in Arid Regions of China Geological Survey.
文摘Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on groundwater recharge in arid regions,and quantitative assessment of the impact is key to sustainable groundwater resources management.In this study,the changes of groundwater recharge after the conversion of natural lands to croplands were investigated and compared in inland and arid region,i.e.,the northern slope of the Tianshan Mountain.Stable isotopes suggest that soil water in topsoil(<2 m)has experienced stronger evaporation under natural lands than croplands,and then moves downward as a piston flow.Recharge was estimated by the tracer-based mass balance method,i.e.,chloride and sulfate.Recharge rates under natural conditions estimated by the chloride mass balance(CMB)method were estimated to be 0.07 mm/a in deserts and 0.4 mm/a in oases.In contrast,the estimated groundwater recharge ranged from 61.2 mm/a to 44.8 mm/a in croplands,indicating that groundwater recharge would increase significantly after land changes from natural lands to irrigated croplands in arid regions.Recharge estimated by the sulfate mass balance method is consistent with that from the CMB method,indicating that sulfate is also a good tracer capable of estimating groundwater recharge.
基金supported by the Natural Science Foundation of Hainan Province,China(420QN258)the National Natural Science Foundation of China(41630859,41761004).
文摘Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle,forecasting water resource changes,and dealing with the adverse effects of climate change.In this study,we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains,China.By utilizing the temporal and spatial distributions of precipitation stable isotopes in the forest and grassland regions,Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,and isotope mass balance model,we obtained the following results.(1)The Eurasia,Black Sea,and Caspian Sea are the major sources of water vapor.(2)The contribution of surface evaporation to precipitation in forests is lower than that in the grasslands(except in spring),while the contribution of plant transpiration to precipitation in forests(5.35%)is higher than that in grasslands(3.79%)in summer.(3)The underlying surface and temperature are the main factors that affect the contribution of recycled water vapor to precipitation;meanwhile,the effects of water vapor sources of precipitation on precipitation stable isotopes are counteracted by other environmental factors.Overall,this work will prove beneficial in quantifying the effect of climate change on local water cycles.
文摘In the 18^(th)century,British gardens began to transform from a classical to a natural landscape style.During this period,they were influenced by the economy,local nature,as well as foreign cultures.The 18^(th)century was the golden period of cultural exchange between China and the West which gave Britain the opportunity to absorb the cultures of Chinese classical gardens.British gardeners had used various elements of Chinese classical gardens as their point of reference which promoted the development of British natural landscape gardens.
文摘-Rock glaciers are developed at permafrost areas of periglacial environment in Tianshan Mountains [7,17]. Based on field surveying andair-photo interprestation, the paper discusses the shape, characteristics of supply area, formation conditions and environmental differentiations of rockglaciers at head area of Urmqi River (43°05'-43°08' N, 86°48’-86°53E) inKalawuchen Range and the head areas of Toudao River and Danangou River (43°30’-43°50’N, 85°00-85°30’E) in Yilanhabierga Rangu at ShawanCounty. Formation conditions and morphological characteristics of rockglaciers are studies in terms of topographic conditions, climate, compositionand age.
基金This study was supported by grant from the National Natu-ral Science Foundation of China (No. 30271068) the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ
文摘Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan
文摘The factor of human project activity is often the immediate cause resulting in soil and water loss. The Baoji-Lanzhou second railway in construction is an example. The soil and water loss law caused by earth and stone mountain railway engineering construction in the northwestern China is studied systematically and that caused possibly by the road bed project, the road moat project, the field project, the tunnel project and the service road project in construction is probed. At the same time, the type, t...
文摘In view of the fact that water resource had been taken as the focus of tourism development in Jiangsu Province, the paper had analyzed superior features of water tourist resource in Jiangsu Province, and summarized geographic features and plentiful water resources in Jiangsu. It emphasized that water resource was large in amount and river flew through most cities; that water resource was widely distributed and national AAAAA and AAAA scenic areas (spots) with water resource spread all over the province; that water resource was diversified in types and it could be divided into reaches, natural lakes and pools, springs, waterfalls, river mouths and lake surfaces; that water tourist resource was high in taste, strong in function and high in overall quality; and that water resource played a distinct role in landscape structure, which could not only constitute the main feature in isolation, but also lend people the sense of beauty through multiple landscaping factors. Based on the comprehensive evaluation on superior features of water resource in Jiangsu Province, it had proposed practical value for water tourism development, which was providing reference for scientific tourism planning, offering tourists abundant tourist products, shaping tourism brand image with distinct personality, creating a new growth pole and enhancing the protection of water resource.
基金Project(52225403)supported by the National Natural Science Foundation of ChinaProject(2023YFF0615401)supported by the National Key Research and Development Program of China+1 种基金Projects(2023NSFSC0004,2023NSFSC0790)supported by Science and Technology Program of Sichuan Province,ChinaProject(2021-CMCUKFZD001)supported by the Open Fund of State Key Laboratory of Coal Mining and Clean Utilization,China。
文摘Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.