Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs...Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.展开更多
arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperf...arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.展开更多
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ...The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.展开更多
A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been...A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been selected so that the element shows rapid convergence, an excellent response against transverse shear loading and requires no shear correction factors. It is completely lock-free and behaves extremely well for thin to thick plates. To make the element rapidly convergent and to capture warping effects for composites, higher order displacement terms in the displacement kinematics have been considered for each node. The element has eleven degrees of freedom per node. Shear deformation has also been considered in the formulation by taking into account shear strains ( rxz and ryz) as nodal unknowns. The element is very simple to formulate and could be coded up in research software. A small Fortran code has been developed to implement the element and various examples of isotropic and composite plates have been analyzed to show the effectiveness of the element.展开更多
Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear d...Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear deformation theories. The variationally consistent theory presented here has, in many respects,strong similarity to the classical plate theory. It does not require shear correction factors,and gives rise to such transverse shear stress variation that the transverse shear stresses vary parabolically across the thickness and satisfy shear stress free surface conditions.Material properties of the plate are assumed to be graded in the thickness direction with their distributions following a simple power-law in terms of the volume fractions of the constituents.Governing equations are derived from the principle of virtual displacements, and a closed-form solution is found for a simply supported rectangular plate subjected to sinusoidal loading by using the Navier method.Numerical results obtained by the present theory are compared with available solutions,from which it can be concluded that the proposed theory is accurate and simple in analyzing the static bending behavior of functionally graded plates.展开更多
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but w...The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.展开更多
Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new model...Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.展开更多
This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In ...This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures.展开更多
The hydroelastic response of very large floating structures (VLFS) under the action of ocean waves is analysed considering the small amplitude wave theory. The very large floating structure is modelled as a floating t...The hydroelastic response of very large floating structures (VLFS) under the action of ocean waves is analysed considering the small amplitude wave theory. The very large floating structure is modelled as a floating thick elastic plate based on Timoshenko- Mindlin plate theory, and the analysis for the hydroelastic response is performed considering different edge boundary conditions. The numerical study is performed to analyse the wave reflection and transmission characteristics of the floating plate under the influence of different support conditions using eigenfunction expansion method along with the orthogonal mode-coupling relation in the case of finite water depth. Further, the analysis is extended for shallow water depth, and the continuity of energy and mass flux is applied along the edges of the plate to obtain the solution for the problem. The hydroelastic behaviour in terms of reflection and transmission coefficients, plate deflection, strain, bending moment and shear force of the floating thick elastic plate with support conditions is analysed and compared for finite and shallow water depth. The study reveals an interesting aspect in the analysis of thick floating elastic plate with support condition due to the presence of the rotary inertia and transverse shear deformation. The present study will be helpful for the design and analysis of the VLFS in the case of finite and shallow water depth.展开更多
Based on the mathematical similarity of the axisymmetric eigenvalue problems of a circular plate between the classical plate theory(CPT), the first-order shear deformation plate theory(FPT) and the Reddy's third-...Based on the mathematical similarity of the axisymmetric eigenvalue problems of a circular plate between the classical plate theory(CPT), the first-order shear deformation plate theory(FPT) and the Reddy's third-order shear deformation plate theory(RPT), analytical relations between the eigenvalues of circular plate based on various plate theories are investigated. In the present paper, the eigenvalue problem is transformed to solve an algebra equation. Analytical relationships that are expressed explicitly between various theories are presented. Therefore, from these relationships one can easily obtain the exact RPT and FPT solutions of critical buckling load and natural frequency for a circular plate with CPT solutions. The relationships are useful for engineering application, and can be used to check the validity, convergence and accuracy of numerical results for the eigenvalue problem of plates.展开更多
An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated r...An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated rectangular thin plate with parametric and external excitations.According to the Reddy's third-order plate theory,the governing equations of motion for the angle-ply composite laminated rectangular thin plate are derived by using the Hamilton's principle.Then,the Galerkin procedure is applied to the partial differential governing equation to obtain a two-degrees-of-freedom nonlinear system including the quadratic and cubic nonlinear terms.Such equations are utilized to deal with the resonant case of 1:1 internal resonance and primary parametric resonance-1/2 subharmonic resonance.Furthermore,the stability analysis is given for the steady-state solutions of the averaged equation.Based on the averaged equation obtained by the asymptotic perturbation method,the phase portrait and power spectrum are used to analyze the multi-pulse chaotic motions of the angle-ply composite laminated rectangular thin plate.Under certain conditions the various chaotic motions of the angle-ply composite laminated rectangular thin plate are found.展开更多
The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functional...The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functionally graded(FG) layer and a graphene platelet(GPL) reinforced porous layer, respectively. Henceforth, the combined layers will be referred to as a two-dimensional(2D) FG/GPL plate. Two types of porosity and three graphene dispersion patterns, each of which is distributed through the plate thickness,are investigated. The mechanical properties of the closed-cell layers are used to define the variation of Poisson’s ratio and the relationship between the porosity coefficients and the mass density. For the GPL reinforced layer, the effective Young’s modulus is derived with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate the effective mass density and Poisson’s ratio. The material of the upper 2D-FG layer is graded in two directions, and its effective mechanical properties are also derived with the rule of mixtures. The dynamic governing equations are derived with a first-order shear deformation theory(FSDT) and the von Kármán nonlinear theory. A combination of the dynamic relaxation(DR) and Newmark’s direct integration methods is used to solve the governing equations in both time and space. A parametric study is carried out to explore the effects of the porosity coefficients, porosity and GPL distributions, material gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the plate response. It is shown that both the distributions of the porosity and graphene nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that the reduction in the dynamic deflection of the bilayer composite plates is maximized when the porosity and GPL distributions are symmetric.展开更多
Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, un...Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom(DOF)nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics,including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.展开更多
This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of bea...This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.展开更多
A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also...A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.展开更多
A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation...A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
文摘Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
文摘arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
基金the University of Kashan.(Grant Number:467893/0655)。
文摘The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.
文摘A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been selected so that the element shows rapid convergence, an excellent response against transverse shear loading and requires no shear correction factors. It is completely lock-free and behaves extremely well for thin to thick plates. To make the element rapidly convergent and to capture warping effects for composites, higher order displacement terms in the displacement kinematics have been considered for each node. The element has eleven degrees of freedom per node. Shear deformation has also been considered in the formulation by taking into account shear strains ( rxz and ryz) as nodal unknowns. The element is very simple to formulate and could be coded up in research software. A small Fortran code has been developed to implement the element and various examples of isotropic and composite plates have been analyzed to show the effectiveness of the element.
文摘Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear deformation theories. The variationally consistent theory presented here has, in many respects,strong similarity to the classical plate theory. It does not require shear correction factors,and gives rise to such transverse shear stress variation that the transverse shear stresses vary parabolically across the thickness and satisfy shear stress free surface conditions.Material properties of the plate are assumed to be graded in the thickness direction with their distributions following a simple power-law in terms of the volume fractions of the constituents.Governing equations are derived from the principle of virtual displacements, and a closed-form solution is found for a simply supported rectangular plate subjected to sinusoidal loading by using the Navier method.Numerical results obtained by the present theory are compared with available solutions,from which it can be concluded that the proposed theory is accurate and simple in analyzing the static bending behavior of functionally graded plates.
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
文摘The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.
基金The project is supported by the National Natural Science Foundation of China(10502028)the Special Foundation for the Authors of the Nationwide(China)Excellent Doctoral Dissertation(200242)the Science Research Foundation of China Agricultural University(2004016).
文摘Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.
文摘This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures.
基金NITK SurathkalMHRD+2 种基金the Science and Engineering Research Board(SERB)Department of Science&Technology(DST)Government of India,for supporting financially under the Young Scientist research grant No.YSS/2014/000812
文摘The hydroelastic response of very large floating structures (VLFS) under the action of ocean waves is analysed considering the small amplitude wave theory. The very large floating structure is modelled as a floating thick elastic plate based on Timoshenko- Mindlin plate theory, and the analysis for the hydroelastic response is performed considering different edge boundary conditions. The numerical study is performed to analyse the wave reflection and transmission characteristics of the floating plate under the influence of different support conditions using eigenfunction expansion method along with the orthogonal mode-coupling relation in the case of finite water depth. Further, the analysis is extended for shallow water depth, and the continuity of energy and mass flux is applied along the edges of the plate to obtain the solution for the problem. The hydroelastic behaviour in terms of reflection and transmission coefficients, plate deflection, strain, bending moment and shear force of the floating thick elastic plate with support conditions is analysed and compared for finite and shallow water depth. The study reveals an interesting aspect in the analysis of thick floating elastic plate with support condition due to the presence of the rotary inertia and transverse shear deformation. The present study will be helpful for the design and analysis of the VLFS in the case of finite and shallow water depth.
基金Project supported by the National Natural Science Foundation of China (No. 10125212)
文摘Based on the mathematical similarity of the axisymmetric eigenvalue problems of a circular plate between the classical plate theory(CPT), the first-order shear deformation plate theory(FPT) and the Reddy's third-order shear deformation plate theory(RPT), analytical relations between the eigenvalues of circular plate based on various plate theories are investigated. In the present paper, the eigenvalue problem is transformed to solve an algebra equation. Analytical relationships that are expressed explicitly between various theories are presented. Therefore, from these relationships one can easily obtain the exact RPT and FPT solutions of critical buckling load and natural frequency for a circular plate with CPT solutions. The relationships are useful for engineering application, and can be used to check the validity, convergence and accuracy of numerical results for the eigenvalue problem of plates.
基金supported by the National Natural Science Foundation of China (Grant Nos.10732020,10872010)the National Science Fund for Distinguished Young Scholars (Grant No.10425209)
文摘An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated rectangular thin plate with parametric and external excitations.According to the Reddy's third-order plate theory,the governing equations of motion for the angle-ply composite laminated rectangular thin plate are derived by using the Hamilton's principle.Then,the Galerkin procedure is applied to the partial differential governing equation to obtain a two-degrees-of-freedom nonlinear system including the quadratic and cubic nonlinear terms.Such equations are utilized to deal with the resonant case of 1:1 internal resonance and primary parametric resonance-1/2 subharmonic resonance.Furthermore,the stability analysis is given for the steady-state solutions of the averaged equation.Based on the averaged equation obtained by the asymptotic perturbation method,the phase portrait and power spectrum are used to analyze the multi-pulse chaotic motions of the angle-ply composite laminated rectangular thin plate.Under certain conditions the various chaotic motions of the angle-ply composite laminated rectangular thin plate are found.
文摘The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functionally graded(FG) layer and a graphene platelet(GPL) reinforced porous layer, respectively. Henceforth, the combined layers will be referred to as a two-dimensional(2D) FG/GPL plate. Two types of porosity and three graphene dispersion patterns, each of which is distributed through the plate thickness,are investigated. The mechanical properties of the closed-cell layers are used to define the variation of Poisson’s ratio and the relationship between the porosity coefficients and the mass density. For the GPL reinforced layer, the effective Young’s modulus is derived with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate the effective mass density and Poisson’s ratio. The material of the upper 2D-FG layer is graded in two directions, and its effective mechanical properties are also derived with the rule of mixtures. The dynamic governing equations are derived with a first-order shear deformation theory(FSDT) and the von Kármán nonlinear theory. A combination of the dynamic relaxation(DR) and Newmark’s direct integration methods is used to solve the governing equations in both time and space. A parametric study is carried out to explore the effects of the porosity coefficients, porosity and GPL distributions, material gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the plate response. It is shown that both the distributions of the porosity and graphene nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that the reduction in the dynamic deflection of the bilayer composite plates is maximized when the porosity and GPL distributions are symmetric.
基金supported by the National Natural Science Foundation of China (Grants 11402126, 11502122, and 11290152)the Scientific Research Foundation of the Inner Mongolia University of Technology (Grant ZD201410)
文摘Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom(DOF)nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics,including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.
文摘This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.
基金financially supported by the Science Fund for Outstanding Youth of the National Natural Science Foundation of China(Grant No.51222904)the National Security Major Basic Research Program of China(Grant No.613157)+1 种基金the Key Program of National Natural Science Foundation of China(Grant No.0939002)the National Natural Science Foundation of China(Grant No.51209052)
文摘A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.
文摘A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.