Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ...Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.展开更多
Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment.Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CF...Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment.Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CFD)was used to assess the impact of the area coverage rate,immersion depth,diffusion coefficient,and radon transfer velocity at the gas–liquid interface on radon migration and exhalation of radon-containing water.Based on the numerical simulation results,an estimation model for the radon retardation rate was constructed.The effectiveness of the CFD simulation was evaluated by comparing the experimental and simulated variation values of the radon retardation rate with the coverage area rates.Results The effect of radon transfer velocity on radon retardation in water bodies was minor and insignificant according to the appropriate value;therefore,an estimation model of the radon retardation rate of the coverage of a radon-containing water body was constructed using the synergistic impacts of three factors:area coverage rate,immersion depth,and diffusion coefficient.The deviation between the experimental and simulated results was<4.3%.Conclusion Based on the numerical simulation conditions,an estimation model of the radon retardation rate of covering floats in water bodies under the synergistic effect of multiple factors was obtained,which provides a reference for designing covering floats for radon retardation in radoncontaining water.展开更多
Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipat...Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipathic Ru(bda)-based catalysts(bda=2,2'-bipyrdine-6,6'-dicarbonoxyl acid)and aliphatic chain decorated electrode surfaces,forming lipid bilayer membrane(LBM)-like structures.The Ru(bda)catalysts on electrode-supported LBM films demonstrated remarkable water oxidation performance with different O-O formation mechanisms.However,compared to the slow charge transfer process,the O-O formation pathways did not determine the PEC water oxidation efficiency of the dyesensitized photoanodes,and the different reaction rates for similar catalysts with different catalytic paths did not determine the PEC performance of the DSPECs.Instead,charge transfer plays a decisive role in the PEC water oxidation rate.When an indolo[3,2-b]carbazole derivative was introduced between the Ru(bda)catalysts and aliphatic chain-modified photosensitizer in LBM films,serving as a charge transfer mediator for the tyrosine-histidine pair in PSⅡ,the PEC water oxidation performance of the corresponding photoanodes was dramatically enhanced.展开更多
Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as ...Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.展开更多
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte...A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
Water markets even though not perfect and require a lot of effort to establish are considered as a robust tool to address water management issues around the world. However, the existing literature does not provide an ...Water markets even though not perfect and require a lot of effort to establish are considered as a robust tool to address water management issues around the world. However, the existing literature does not provide an optimal water resource management policy. To create a perfect water market, the government needs to identify the potential number of suppliers/producers and consumers of water against various extraction/supply/production rates of water, i.e., to identify a supply and a demand curve for number of suppliers/producers of water against each production rate in economy. This article presents a theory which is practically applicable for an optimal dynamical water resource management policy (JEL H20, H23, H27).展开更多
Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)...Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)) and three seeding rates(SR67.5,SR90,and SR112.5) to determine suitable sowing date and seeding rate for high wheat yield.A large seasonal variation in accumulated temperature from sowing to winter dormancy was observed among three growing seasons.Suitable sowing dates for strong seedlings before winter varied with the seasons,that was SD2 in 2012–2013,SD3 in 2013–2014,and SD2 as well as SD1 in 2014–2015.Seasonal variation in precipitation during summer fallow also had substantial effects on soil water storage,and consequently influenced grain yield through soil water consumption from winter dormancy to maturity stages.Lower consumption of soil water from winter dormancy to booting stages could make more water available for productive growth from anthesis to maturity stages,leading to higher grain yield.SD2 combined with SR90 had the lowest soil water consumption from winter dormancy to booting stages in 2012–2013 and 2014–2015; while in 2013–2014,it was close to that with SR67.5 or SR112.5.For productive growth from anthesis to maturity stages,SD2 with SR90 had the highest soil water consumption in all three seasons.The highest water consumption in the productive growth period resulted in the best grain yield in both low and high rainfall years.Ear number largely contributed to the seasonal variation in grain yield,while grain number per ear and 1 000-grain weight also contributed to grain yield,especially when soil water storage was high.Our results indicate that sowing date and seeding rate affect grain yield through seedling development before winter and also affect soil water consumption in different growth periods.By selecting the suitable sowing date(1 October) in combination with the proper seeding rate of 90 kg ha–1,the best yield was achieved.Based on these results,we recommend that the current sowing date be delayed from 22 or 23 September to 1 October.展开更多
Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during a...Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.展开更多
The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North ...The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.展开更多
Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil fo...Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells.展开更多
Agriculture plays a vital role in the growth and development of the High Plains Region of the United States. With the development and adoption of irrigation technology, this region was transformed into one of the most...Agriculture plays a vital role in the growth and development of the High Plains Region of the United States. With the development and adoption of irrigation technology, this region was transformed into one of the most agriculturally productive regions in the world [1]. The primary source of irrigation in this region is the Ogallala Aquifer. Currently, water from the aquifer is being used at a much faster rate than natural recharge can occur, resulting in a high rate of depletion from this finite resource. Depletion of scarce water resources will have a significant economic impact on the long-term sustainability of the region. The objective of this study is to evaluate the impact alternative prices and discount rates have on groundwater policy recommendations. Deterministic models of groundwater withdrawals were developed and used in order to analyze and evaluate the impact of high, average, and low crop prices in a status quo scenario as well as a policy scenario reducing irrigated acreage allocation. Furthermore, this study analyzes the effects and associated consequences of alternative discount rates on net and total revenue. As indicated by results of this study, alternative prices, costs, and discount rates utilized in a model have an effect on policy effectiveness.展开更多
A variable chlorine decay rate modeling of the Matsapha town water network was developed based on initial chlorine dosages. The model was adequately described by a second order rate function of the chlorine decay rate...A variable chlorine decay rate modeling of the Matsapha town water network was developed based on initial chlorine dosages. The model was adequately described by a second order rate function of the chlorine decay rate with respect to the initial chlorine dose applied. Simulations of chlorine residuals within the Matsapha water distribution network were run using the EPANET 2.0 program at different initial chlorine dosages and using the variable decay rate as described by the second order model. The measurement results indicated that the use of constant decay rate tended to underestimate chlorine residuals leading to potentially excess dosages with the associated chemical cost and side effects. The error between the two rate models varied between 0% and 15%. It is suggested that the use of water quality simulation programs such as EPANET be enhanced through the extension programs that accommodate variable rate modeling of chlorine residuals within distribution systems.展开更多
To study the influence of sowing rate,water and fertilizer( N,P and K) coupling on water use efficiency of fodder millet grown in autumn fallow field,taking " Jigu 18" as the tested material,a orthogonal rot...To study the influence of sowing rate,water and fertilizer( N,P and K) coupling on water use efficiency of fodder millet grown in autumn fallow field,taking " Jigu 18" as the tested material,a orthogonal rotation combination with five factors was designed in pot experiment. Results showed that both water and phosphate fertilizer had important impacts on water use efficiency,in which water had the maximum impact,followed by phosphate fertilizer,and nitrogen fertilizer,potassium fertilizer and sowing rate all had no obvious impact. Significant item of sowing rate,water and fertilizer coupling had the below sequence: potassium fertilizer + sowing rate > nitrogen fertilizer + phosphate fertilizer > water + phosphate fertilizer > water + sowing rate > water + potassium fertilizer,and other items had no obvious impact. Mathematical model was established: y = 44. 26- 1. 311x1- 2. 298x2- 3. 682x3- 6. 401x4- 34. 540x5+ 0. 273x1x3+ 0. 118x1x4+ 0. 843x1x5- 1. 948x2x3+ 6. 631x4x5. The optimal scheme taking economic benefit as the examining index was cleared,that is,soil water content maintained 10%,and sowing rate of fodder millet was 15 kg / hm2. By the scheme,water use efficiency was 26. 24 g / kg,and hay yield was13980. 90 kg / hm2,with economic benefit of 13830. 90 yuan/hm2,which was 3063. 73 yuan/hm2 more than the optimized combination with the highest hay yield,with increase magnitude of 22. 15%,and was 6215. 15 yuan / hm2 more than the optimized combination with the highest water use efficiency,with increase magnitude of 44. 94%. The research could provide theoretic basis and technical support for production practice of fodder millet grown in autumn fallow field.展开更多
The new theoretical models describe both the solubility S of the shot chain n-alkanes in water at 298.15 K, and their reaction rate constants k with nitronium cation NO<sub>2</sub><sup>+ </sup>...The new theoretical models describe both the solubility S of the shot chain n-alkanes in water at 298.15 K, and their reaction rate constants k with nitronium cation NO<sub>2</sub><sup>+ </sup>at 293.15 K on the basis of their molecular orbital characteristics. It is shown that both the quantities S and k are determined by the energies E<sub>orb</sub> of the specific virtual (for S) and occupied (for k) molecular orbitals of these n-alkanes. The obtained regression equations confirm the theoretically found dependences of S and k on the absolute value of E<sub>orb</sub>. This fact demonstrates that the electronic structure particularities of the studied n-alkanes play a crucial role in both their above-mentioned physicochemical properties.展开更多
The influence of solvent and the rate of addition of water on the characteristics of alumina-zirconia powders obtained by sol-gel method were investigated. The Al2O3-ZrO2 powders (1:1 molar ratio) were prepared using ...The influence of solvent and the rate of addition of water on the characteristics of alumina-zirconia powders obtained by sol-gel method were investigated. The Al2O3-ZrO2 powders (1:1 molar ratio) were prepared using aluminum tri-sec-butoxide and zirconium n-propoxide as precursors. Ethanol (EtOH), isopropanol (iPrOH) and isobutanol (iBuOH) were used as solvents. The Al2O3-ZrO2 powders were characterized by nitrogen physisorption (SBET), Fourier transformed infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Prepared oxides calcined at 700℃ showed high specific surface area (200 - 240 m2/g). Obtained results suggest that the homogeneity of the mixed oxides is favored by using a water addition rate of 0.06 and 0.10 mL/min with ethanol as solvent.展开更多
Addition of digested sewage sludge at concentrations of 2% and 10% (v/v) to the water increased coughing rate in big head and tilapia (P<0.05). Ventilation rate was significantly decreased (P<0.05) in big head a...Addition of digested sewage sludge at concentrations of 2% and 10% (v/v) to the water increased coughing rate in big head and tilapia (P<0.05). Ventilation rate was significantly decreased (P<0.05) in big head and tilapia at sludge concentrations of 6% and 2% (v/v)respectively. Copper (Cu), cadmium (Cd) and zinc (Zn) are trace metals which are commonly found in sludge. Cu caused a significant increase (P<0.05) in coughing rate in both tilapia and big head at concentrations of 0.3 and 0.2 μg/ml respectively. Zn caused significant increase (P<0.05) in coughing rate only in big head at 2 μg/ml. Neither fish responded to Cd of up to 2μg/ml in the water. However, when the levels of these trace metals in the digested sludge were measured, they were below that which can cause significant changes in the respiratory movements. Therefore, the changes in ventilation and coughing rates after addition of sludge may be due to the presence of substances other than these metals. The results of this experiment provides a guideline to control the level of sludge that can be used in rearing these fresh water fish in ponds展开更多
Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fi...Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.展开更多
Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction tem...Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C.展开更多
Introduction: To compare the measured dose distributions to calculated ones in dose-to-water (Dw) and dose-to-medium (Dm) reporting modes for simple plans and patient-specific intensity modulated radiation therapy (IM...Introduction: To compare the measured dose distributions to calculated ones in dose-to-water (Dw) and dose-to-medium (Dm) reporting modes for simple plans and patient-specific intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans using ArcCHECK with a fixed phantom density. Methods: The recommended density value of 1.18 g/cm3 for Acuros XB and X-ray voxel Monte Carlo was assigned to ArcCHECK on CT images. A total of 45 simple plans, including a 1-field plan, a 3-field plan, a 4-field plan, a half-arc plan from 270° to 90°, and a full-arc plan, were assessed. Subsequently, the patient-specific 96 IMRT and VMAT plans were evaluated. Gamma analysis with a 3% normalized global dose error and a 3 mm distance-to-agreement criteria (γ3%G/3mm) was performed in the Dw and Dm. The change in γ3%G/3mm between Dw and Dm were statistically analyzed using JMPPro11 software. Results: The median values of γ3%G/3mm for all simple plans for Dw and Dm were 98.1% (range, 75.2% - 100%) and 95.5% (range, 23.7% - 100%), respectively (p 0.01). In the patient-specific IMRT and VMAT plans, the median values of γ3%G/3mm for Dw and Dm were 98.6% (range, 90.1% - 100%) and 90.5% (range, 38.5% - 97.2%), respectively (p 0.01). Conclusion: Our results showed that the calculated and measured dose distributions were in good agreement for Dw, but were not for Dm. From the viewpoint of the rationale of dosimetry, Dw shows better agreement with measured dose distribution when using the fixedphantom density recommended by the vendor.展开更多
基金financial support from The University of Manchester to cover his PhD tuition fees for him to carry out this workChina National High-end Foreign Experts Recruitment Plan Project (G2023018001L) for partially supporting the work。
文摘Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.
基金supported by a grant from the National Natural Science Foundation of China(Grant nos.31770907,31640022)the National Natural Science Foundation of China(Grant No.11575080)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30482).
文摘Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment.Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CFD)was used to assess the impact of the area coverage rate,immersion depth,diffusion coefficient,and radon transfer velocity at the gas–liquid interface on radon migration and exhalation of radon-containing water.Based on the numerical simulation results,an estimation model for the radon retardation rate was constructed.The effectiveness of the CFD simulation was evaluated by comparing the experimental and simulated variation values of the radon retardation rate with the coverage area rates.Results The effect of radon transfer velocity on radon retardation in water bodies was minor and insignificant according to the appropriate value;therefore,an estimation model of the radon retardation rate of the coverage of a radon-containing water body was constructed using the synergistic impacts of three factors:area coverage rate,immersion depth,and diffusion coefficient.The deviation between the experimental and simulated results was<4.3%.Conclusion Based on the numerical simulation conditions,an estimation model of the radon retardation rate of covering floats in water bodies under the synergistic effect of multiple factors was obtained,which provides a reference for designing covering floats for radon retardation in radoncontaining water.
基金conducted by the Fundamental Research Center of Artificial Photosynthesis(FReCAP)financially supported by the National Natural Science Foundation of China(22172011 and 22088102)+1 种基金the National Key R&D Program of China(2022YFA0911904)the Fundamental Research Funds for the Central Universities(DUT22LK06,DUT22QN213 and DUT23LAB611)。
文摘Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipathic Ru(bda)-based catalysts(bda=2,2'-bipyrdine-6,6'-dicarbonoxyl acid)and aliphatic chain decorated electrode surfaces,forming lipid bilayer membrane(LBM)-like structures.The Ru(bda)catalysts on electrode-supported LBM films demonstrated remarkable water oxidation performance with different O-O formation mechanisms.However,compared to the slow charge transfer process,the O-O formation pathways did not determine the PEC water oxidation efficiency of the dyesensitized photoanodes,and the different reaction rates for similar catalysts with different catalytic paths did not determine the PEC performance of the DSPECs.Instead,charge transfer plays a decisive role in the PEC water oxidation rate.When an indolo[3,2-b]carbazole derivative was introduced between the Ru(bda)catalysts and aliphatic chain-modified photosensitizer in LBM films,serving as a charge transfer mediator for the tyrosine-histidine pair in PSⅡ,the PEC water oxidation performance of the corresponding photoanodes was dramatically enhanced.
基金the National Basic Research Development of China(2011CB936003)the National Natural Science Foundation of China(50971116)。
文摘Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.
文摘A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
文摘Water markets even though not perfect and require a lot of effort to establish are considered as a robust tool to address water management issues around the world. However, the existing literature does not provide an optimal water resource management policy. To create a perfect water market, the government needs to identify the potential number of suppliers/producers and consumers of water against various extraction/supply/production rates of water, i.e., to identify a supply and a demand curve for number of suppliers/producers of water against each production rate in economy. This article presents a theory which is practically applicable for an optimal dynamical water resource management policy (JEL H20, H23, H27).
基金supported by the earmarked fund for China Agriculture Research System (CARS-0301-24)the National Natural Science Foundation of China (31771727)+5 种基金the National Key Technology R&D Program of China (2015BAD23B04-2)The research project was also supported by the Shanxi Scholarship Council,China (2015Key 4)the Shanxi Science and Technology Innovation Team Project,China (201605D131041)the Jinzhong Science and Technology Plan Project,China (Y172007-2)the Sanjin Scholar Support Special Funds,Chinathe Special Fund for Agro-scientific Research in the Public Interest,China (201503120)
文摘Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)) and three seeding rates(SR67.5,SR90,and SR112.5) to determine suitable sowing date and seeding rate for high wheat yield.A large seasonal variation in accumulated temperature from sowing to winter dormancy was observed among three growing seasons.Suitable sowing dates for strong seedlings before winter varied with the seasons,that was SD2 in 2012–2013,SD3 in 2013–2014,and SD2 as well as SD1 in 2014–2015.Seasonal variation in precipitation during summer fallow also had substantial effects on soil water storage,and consequently influenced grain yield through soil water consumption from winter dormancy to maturity stages.Lower consumption of soil water from winter dormancy to booting stages could make more water available for productive growth from anthesis to maturity stages,leading to higher grain yield.SD2 combined with SR90 had the lowest soil water consumption from winter dormancy to booting stages in 2012–2013 and 2014–2015; while in 2013–2014,it was close to that with SR67.5 or SR112.5.For productive growth from anthesis to maturity stages,SD2 with SR90 had the highest soil water consumption in all three seasons.The highest water consumption in the productive growth period resulted in the best grain yield in both low and high rainfall years.Ear number largely contributed to the seasonal variation in grain yield,while grain number per ear and 1 000-grain weight also contributed to grain yield,especially when soil water storage was high.Our results indicate that sowing date and seeding rate affect grain yield through seedling development before winter and also affect soil water consumption in different growth periods.By selecting the suitable sowing date(1 October) in combination with the proper seeding rate of 90 kg ha–1,the best yield was achieved.Based on these results,we recommend that the current sowing date be delayed from 22 or 23 September to 1 October.
文摘Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.
基金Supported by the National Natural Science Foundation of China (Nos. 40906005, 40830106, 40730953, GYHY201106017)the National Basic Research Program of China (973 Program) (No. 2010CB428504)the National Key Technologies Research and Development Program of China (No. 2009BAC51B01)
文摘The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.
基金supported by the National Science and Technology Major Project of China (No. 2011ZX05010-003)the National Natural Science Foundation of China (No. 10902093)
文摘Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells.
文摘Agriculture plays a vital role in the growth and development of the High Plains Region of the United States. With the development and adoption of irrigation technology, this region was transformed into one of the most agriculturally productive regions in the world [1]. The primary source of irrigation in this region is the Ogallala Aquifer. Currently, water from the aquifer is being used at a much faster rate than natural recharge can occur, resulting in a high rate of depletion from this finite resource. Depletion of scarce water resources will have a significant economic impact on the long-term sustainability of the region. The objective of this study is to evaluate the impact alternative prices and discount rates have on groundwater policy recommendations. Deterministic models of groundwater withdrawals were developed and used in order to analyze and evaluate the impact of high, average, and low crop prices in a status quo scenario as well as a policy scenario reducing irrigated acreage allocation. Furthermore, this study analyzes the effects and associated consequences of alternative discount rates on net and total revenue. As indicated by results of this study, alternative prices, costs, and discount rates utilized in a model have an effect on policy effectiveness.
文摘A variable chlorine decay rate modeling of the Matsapha town water network was developed based on initial chlorine dosages. The model was adequately described by a second order rate function of the chlorine decay rate with respect to the initial chlorine dose applied. Simulations of chlorine residuals within the Matsapha water distribution network were run using the EPANET 2.0 program at different initial chlorine dosages and using the variable decay rate as described by the second order model. The measurement results indicated that the use of constant decay rate tended to underestimate chlorine residuals leading to potentially excess dosages with the associated chemical cost and side effects. The error between the two rate models varied between 0% and 15%. It is suggested that the use of water quality simulation programs such as EPANET be enhanced through the extension programs that accommodate variable rate modeling of chlorine residuals within distribution systems.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(20120304201)
文摘To study the influence of sowing rate,water and fertilizer( N,P and K) coupling on water use efficiency of fodder millet grown in autumn fallow field,taking " Jigu 18" as the tested material,a orthogonal rotation combination with five factors was designed in pot experiment. Results showed that both water and phosphate fertilizer had important impacts on water use efficiency,in which water had the maximum impact,followed by phosphate fertilizer,and nitrogen fertilizer,potassium fertilizer and sowing rate all had no obvious impact. Significant item of sowing rate,water and fertilizer coupling had the below sequence: potassium fertilizer + sowing rate > nitrogen fertilizer + phosphate fertilizer > water + phosphate fertilizer > water + sowing rate > water + potassium fertilizer,and other items had no obvious impact. Mathematical model was established: y = 44. 26- 1. 311x1- 2. 298x2- 3. 682x3- 6. 401x4- 34. 540x5+ 0. 273x1x3+ 0. 118x1x4+ 0. 843x1x5- 1. 948x2x3+ 6. 631x4x5. The optimal scheme taking economic benefit as the examining index was cleared,that is,soil water content maintained 10%,and sowing rate of fodder millet was 15 kg / hm2. By the scheme,water use efficiency was 26. 24 g / kg,and hay yield was13980. 90 kg / hm2,with economic benefit of 13830. 90 yuan/hm2,which was 3063. 73 yuan/hm2 more than the optimized combination with the highest hay yield,with increase magnitude of 22. 15%,and was 6215. 15 yuan / hm2 more than the optimized combination with the highest water use efficiency,with increase magnitude of 44. 94%. The research could provide theoretic basis and technical support for production practice of fodder millet grown in autumn fallow field.
文摘The new theoretical models describe both the solubility S of the shot chain n-alkanes in water at 298.15 K, and their reaction rate constants k with nitronium cation NO<sub>2</sub><sup>+ </sup>at 293.15 K on the basis of their molecular orbital characteristics. It is shown that both the quantities S and k are determined by the energies E<sub>orb</sub> of the specific virtual (for S) and occupied (for k) molecular orbitals of these n-alkanes. The obtained regression equations confirm the theoretically found dependences of S and k on the absolute value of E<sub>orb</sub>. This fact demonstrates that the electronic structure particularities of the studied n-alkanes play a crucial role in both their above-mentioned physicochemical properties.
文摘The influence of solvent and the rate of addition of water on the characteristics of alumina-zirconia powders obtained by sol-gel method were investigated. The Al2O3-ZrO2 powders (1:1 molar ratio) were prepared using aluminum tri-sec-butoxide and zirconium n-propoxide as precursors. Ethanol (EtOH), isopropanol (iPrOH) and isobutanol (iBuOH) were used as solvents. The Al2O3-ZrO2 powders were characterized by nitrogen physisorption (SBET), Fourier transformed infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Prepared oxides calcined at 700℃ showed high specific surface area (200 - 240 m2/g). Obtained results suggest that the homogeneity of the mixed oxides is favored by using a water addition rate of 0.06 and 0.10 mL/min with ethanol as solvent.
文摘Addition of digested sewage sludge at concentrations of 2% and 10% (v/v) to the water increased coughing rate in big head and tilapia (P<0.05). Ventilation rate was significantly decreased (P<0.05) in big head and tilapia at sludge concentrations of 6% and 2% (v/v)respectively. Copper (Cu), cadmium (Cd) and zinc (Zn) are trace metals which are commonly found in sludge. Cu caused a significant increase (P<0.05) in coughing rate in both tilapia and big head at concentrations of 0.3 and 0.2 μg/ml respectively. Zn caused significant increase (P<0.05) in coughing rate only in big head at 2 μg/ml. Neither fish responded to Cd of up to 2μg/ml in the water. However, when the levels of these trace metals in the digested sludge were measured, they were below that which can cause significant changes in the respiratory movements. Therefore, the changes in ventilation and coughing rates after addition of sludge may be due to the presence of substances other than these metals. The results of this experiment provides a guideline to control the level of sludge that can be used in rearing these fresh water fish in ponds
基金national key basic develop-ment of China (G1999043407), grant from the National Natural Science Foundation of China (No. 30271068) and KZ-CX-SW-01-01B of the Chinese Academy of Sciences.
文摘Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.
基金Project supported by the Research Funds of the Key Laboratory of Fuel Cell Technology of Guangdong Province,ChinaProject(7411793079907)supported by the Guangzhou Special Foundation for Applied Basic Research+1 种基金Project(2013A15GX048)supported by the Dalian Science and Technology Project Foundation,ChinaProject(21376035)supported by the National Natural Science Foundation of China
文摘Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C.
文摘Introduction: To compare the measured dose distributions to calculated ones in dose-to-water (Dw) and dose-to-medium (Dm) reporting modes for simple plans and patient-specific intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans using ArcCHECK with a fixed phantom density. Methods: The recommended density value of 1.18 g/cm3 for Acuros XB and X-ray voxel Monte Carlo was assigned to ArcCHECK on CT images. A total of 45 simple plans, including a 1-field plan, a 3-field plan, a 4-field plan, a half-arc plan from 270° to 90°, and a full-arc plan, were assessed. Subsequently, the patient-specific 96 IMRT and VMAT plans were evaluated. Gamma analysis with a 3% normalized global dose error and a 3 mm distance-to-agreement criteria (γ3%G/3mm) was performed in the Dw and Dm. The change in γ3%G/3mm between Dw and Dm were statistically analyzed using JMPPro11 software. Results: The median values of γ3%G/3mm for all simple plans for Dw and Dm were 98.1% (range, 75.2% - 100%) and 95.5% (range, 23.7% - 100%), respectively (p 0.01). In the patient-specific IMRT and VMAT plans, the median values of γ3%G/3mm for Dw and Dm were 98.6% (range, 90.1% - 100%) and 90.5% (range, 38.5% - 97.2%), respectively (p 0.01). Conclusion: Our results showed that the calculated and measured dose distributions were in good agreement for Dw, but were not for Dm. From the viewpoint of the rationale of dosimetry, Dw shows better agreement with measured dose distribution when using the fixedphantom density recommended by the vendor.