Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal...Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.展开更多
The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality...The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality differences and origins of different types of source rocks in the Shahezi Formation,this study reconstructed the sedimentary and water environment,determined the controlling effects of fault activity,sedimentary facies,and paleo-sedimentary environment on the quality of various source rocks,by making full use of seismic,logging,core,organic geochemical and element geochemical analysis.The results show that two types of source rocks developed in the Shahezi Formation,namely,mudstones and coals.The mudstones have a relatively high abundance of organic matter,which consists of type-Ⅱ kerogen and partial type-Ⅲ kerogen,and are concentrated in Sha-I Member.The coals have a high abundance of organic matter,which consist of type-Ⅲ kerogen,and are mainly distributed in Sha-Ⅱ Member.During the deposition of Sha-I Member,intense fault activity formed arrow,deep-water lacustrine basins with high salinity and strong reducibility on the downthrow sides of faults.During the deposition of Sha-II Member,fault activity progressively weakened,and the areas of lacustrine basins enlarged to their maximum values and became wide,shallow-water basins with low salinity and low reducibility.The development of source rocks was controlled by fault activity,sedimentary facies,and paleo-sedimentary environment.Fault activity formed accommodation space on the downthrown sides of faults for mudstone accumulation,thus determining mudstone thickness.The sedimentary environment controlled the organic matter input and determined the distribution of mudstones and coals.The paleo-sedimentary environment,which consisted of paleo-salinity,as well as paleo-water depth and redox conditions,affected the accumulation and preservation of organic matter and is the main controlling factor for the quality difference of various source rocks in the Shahezi Formation.展开更多
Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the ...Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance.展开更多
On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the def...On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmet...In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmetric LCs,cool starspots on the components were employed.It is suggested that their fill-out degrees are f=12.0%(LX Lyn) and f=26.3%(V0853 Aur).At the same time,we found that LX Lyn is a W-type eclipsing binary(EB) with an orbital inclination of i=84°.88 and a mass ratio of q=2.31.V0853 Aur is also a W-type CEB with a mass ratio of q=2.77 and an orbital inclination of i= 79°.26.Based on all available times of light minimum,their orbital period changes are studied by using the O-C method.The O-C diagram of LX Lyn reveals a cyclic oscillation with a period of about 14.84 yr and an amplitude of 0.0019 days,which can be explained by the light-travel time effect(LTTE) due to the presence of a third body with a minimum mass of0.06M_⊙.For V0853 Aur,it is discovered that the O-C diagram of the system also shows a cyclic oscillation with a period of 9.64 yr and an amplitude of 0.03365 days.The cyclic oscillation of V0853 Aur can be attributed to the LTTE by means of a third body with a mass no less than 3.77M_⊙.The third body may play an important role in the formation and evolution of these systems.展开更多
The formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis were analyzed by combining synchrotron radiation X-ray diffraction(SR-XRD) and S...The formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis were analyzed by combining synchrotron radiation X-ray diffraction(SR-XRD) and S, Fe and Cu Kα X-ray absorption near edge structure(XANES) spectroscopy. Leaching experiment showed that 82.4% of Cu2+ was dissolved by A. manzaensis after 10 d. The surface of chalcopyrite was corroded apparently and covered with leaching products. During bioleaching, the formation and evolution of secondary minerals were as follows: 1) little elemental sulfur, jarosite, bornite and chalcocite were found at days 2 and 4; and 2) bornite and chalcocite disappeared, covellite formed, and jarosite gradually became the main component at days 6 and 10. These results indicated that metal-deficiency sulfides chalcocite and bornite were first formed with a low redox potential value(360-461 m V), and then gradually transformed to covellite with a high redox potential value(461-531 m V).展开更多
The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influ...The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.展开更多
This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation...This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.展开更多
Analysis of 2 D seismic data over 4 500 km in length from the Madura Strait Basin in the East Java Sea reveals seismic re?ection characteristics of reefs and associated sedimentary bodies, including asymmetrical or sy...Analysis of 2 D seismic data over 4 500 km in length from the Madura Strait Basin in the East Java Sea reveals seismic re?ection characteristics of reefs and associated sedimentary bodies, including asymmetrical or symmetrical dome re?ections, slope progradational re?ections, chaotic re?ections and discontinuous strong re?ections inside the reef, which onlap the ?ank of the reef. It is concluded that the developmental paleo-environment of most reefs is mainly conducive to shallow marine carbonate platform facies and platform margin facies, based on well core data, variations in seismic facies and strata thickness.The formation and evolution of all reefs are primarily in?uenced by the tectonic framework of the Madura Strait Basin. Platform margin reefs are principally controlled by two types of structures: one is a series of E-W trending Paleogene normal faults, and the other is an E-W trending Neogene inversion structures. In addition, wave actions, tidal currents and other ocean currents play an accelerated role in sorting, rounding and redeposition for the accumulation and evolution of reefs. Tertiary reefs in the MSB can be divided into four types: 1) an open platform coral reef of Late Oligocene to Early Miocene, 2) a platform margin coral reef controlled by normal faults in Late Oligocene to Early Miocene, 3) a platform margin Globigerina moundreef controlled by a "hidden" inversion structure in Early Pliocene, and 4) a platform margin Globigerina mound-reef controlled by thrust faults in the early Pliocene. Patterns of the formation and evolution of reefs are also suggested.展开更多
The ancient aeolian sand has been regarded as an indicator for the formation and evolution of a desert in the past.Kumtagh Desert is located at the northern fringe of Qinghai-Tibet Plateau.The first integrated scienti...The ancient aeolian sand has been regarded as an indicator for the formation and evolution of a desert in the past.Kumtagh Desert is located at the northern fringe of Qinghai-Tibet Plateau.The first integrated scientific investigation to the desert was carried out during the period of 2004-2006.Kumtagh Desert is an ideal natural model for studying the formation and evolution of the desert because the Quaternary strata containing ancient aeolian sands are widely distributed.The integrated field investigation and studies on sedimentary,chronology and palynology of typical profiles named Suosuo gully,Xiaoquan gully and gravel body with ancient aeolian sand layers showed that Kumtagh Desert was probably formed as early as 2,097.7±314.7 ka BP.During the period of 386.9±58.0 ka BP to 285.9±42.9 ka BP,the desert largely expanded and formed its modern distribution pattern.The desert was originally developed in the southwest,subsequently,expanded to the north and northeast.The sedimentary facies of Suosuo gully profile revealed that the desert experienced at least 19 cycles of advance and inverse processes of desertification with an average period of 110 ka in the Quaternary.The neotectonic movements played an important role in the formation,development and geomorphology of the desert.On one hand,the movements caused the formation of intermontane fault basin,which was further developed towards the closed drought basin,and caused the formation of natural environment.On the other hand,under the control of surrounding faults,the unique broom-shaped desert landscape was formed,and the gullies and sand ridges in this region experienced an abrupt directional change from north by west to north by east at the location of 39°45'-39°55'N.The unique landscape of gravel body that occurred widely in the northern desert was formed after 285.9±42.9 ka BP.The results in this paper provide the scientific basis for studying the formation age and evolutionary process under the dry climate and environment in the northwestern China,and the uplifting of Qinghai-Tibet Plateau as well as its responses to the global climate changes.展开更多
The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied....The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied. Through petrologic investigation, diagenetic phases are divided into four stages, i.e., near-surface, pre-oil window, oil window, and gas window. The Adobe Photoshop system is used to quantify the rock texture components, porosity constitutions and the influences of diageneses on reservoir porosity. Porosity evolution curves are quantitatively recovered. The Feixianguan reservoir porosities are mainly created by early meteoric dissolution, dolomitization, and organic acids dissolution. Dissolution during deep burial is insignificant. Pores are formed in near-surface and pre-oil window stages and effectively preserved till present. This result may be of great significance to the further exploration of deeply buried carbonate reservoirs not only in NE Sichuan Basin, but also around the world.展开更多
Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
Objective The Susong complex zone(SCZ)is a relatively lowgrade metamorphic unit mostly with an epidoteamphibolite facies,located in the southernmost part of the Dabie orogen.However,its rock compositions,ages,
The Oligocene Huagang Formation is the main sandstone reservoir in the Xihu Sag, situated in the east of the East China Sea Shelf Basin. With an integrated approach of thin-section petrography, ultra-violet fluorescen...The Oligocene Huagang Formation is the main sandstone reservoir in the Xihu Sag, situated in the east of the East China Sea Shelf Basin. With an integrated approach of thin-section petrography, ultra-violet fluorescence microscopy, scanning electron microscopy, and isotope geochemistry, the different diagenetic features were identified, the typical diagenetic parasequences were established, and the diagenetic fluids evolution history were reconstructed for the Oligocene Huagang Formation sandstone reservoir in the south of Xihu Sag. The Huagang Formation sandstone reservoir is now in Period B of the mesodiagenesis, which has undergone significant diagenetic alterations such as mechanical compaction, Pore-lining chlorite cement, feldspar dissolution, quartz cementation and dissolution, and carbonate cementation. Three types of carbonate cements(early siderite,medium ferrocalcite and late ankerite) were identified in the Huagang Formation sandstone reservoir. The carbon and oxygen isotopic compositions of carbonate cements show that the early calcite precipitate from alkaline lacustrine environment whereas the late carbonate cements were closely related to the organic acids. To the Huagang Formation sandstone reservoir, it has experienced two main episodes of dissolution during diagenesis.The early dissolution is that unstable components such as feldspar, lithic fragments, and carbonate cement were dissolved by acidic water. The second dissolution is that quartz and other silicate minerals were dissolved under the alkaline condition. Two main phases of hydrocarbon charging occurred in this study area. The first hydrocarbon emplacement was prior to the medium carbonate cementation but posterior to feldspar dissolution and the onset of quartz cementation at the end of the Miocene. The second hydrocarbon charging occurred in the Quaternary period after the late carbonate precipitation.展开更多
The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metal...The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metallogenic belt. Till now, several large and super large copper-gold deposits, such as Duobuza, Bolong, Dibaonamugang, Naruo and Rongna deposits have been discovered in this area, mainly porphyry copper-gold ones.展开更多
Based on comprehensive analysis of cores,thin sections,logging and seismic data,the sequence stratigraphy and sedimentary evolution of the third and fourth members of Sinian Dengying Formation(Deng 3 and Deng 4 member...Based on comprehensive analysis of cores,thin sections,logging and seismic data,the sequence stratigraphy and sedimentary evolution of the third and fourth members of Sinian Dengying Formation(Deng 3 and Deng 4 members for short)in the Gaomo area of Sichuan Basin were investigated,and the favorable zones for reservoir development in the Deng 3 Member and Deng 4 Member were predicted.(1)Two Type I and one Type II sequence boundaries are identified in the Deng 3 and Deng 4 members.Based on the identified sequence boundaries,the Deng 3 and Deng 4 members can be divided into two third order sequences SQ3 and SQ4,which are well-developed,isochronal and traceable in this area;the SQ3 thins from west to the east,and the SQ4 thins from northwest to southeast.(2)The sedimentary environment from the depositional period of SQ3 to SQ4 has experienced the evolution from mixed platform to rimmed platform,and the platform rimmed system on the west side is characterized by the development of platform margin microbial mound and grain shoal assemblages.The intraplatform area is a restricted platform facies composed of a variety of dolomites,and there are local micro-geomorphic highlands of different scales and scattered intraplatform mounds and shoals.(3)The Deng 4 Member reservoirs,with obvious facies-controlled characteristic,are mainly distributed in the upper part of high-frequency upward shallow cycle and the high-stand systems tract of the third-order sequence vertically,and are more developed in the platform margin belt than in the intraplatform belt,and more developed in the Gaoshiti platform margin belt than in the west Suining platform margin belt on the plane.(4)Three types of favorable reservoir zones of Deng 4 Member have been finely delineated with 3D seismic data;among them,the mound and shoal facies zones developed in the ancient highlands of the intraplatform are the first choice for the next exploration and development of the Deng 4 Member.展开更多
Nebula theory is the most widely accepted hypothesis about the formation and evolution of the Solar System. This theoryholds that the Sun is formed from a collapsed gas cloud 4.57 billion years ago;when the core tempe...Nebula theory is the most widely accepted hypothesis about the formation and evolution of the Solar System. This theoryholds that the Sun is formed from a collapsed gas cloud 4.57 billion years ago;when the core temperature of the gas cloud rises to 10million K, the thermonuclear reaction of hydrogen fusion into helium is ignited, then the Sun become a star;once the hydrogen in thecore is exhausted, the life of the star will end. But the limited hydrogen element obviously cannot satisfy such a long-termthermonuclear reaction, in order to sustain long-term thermonuclear reactions, a steady stream of fuel must be obtained from space.So the existing hypothesis about the formation and evolution of the Solar System has serious defects. Thus the author has studied theformation of the Moon, the Earth and the Sun, and discovered the formation of the Sun and the real source of star energy. The authorcould also explain many solar activity phenomena such as sunspots, flares, prominences, etc.展开更多
The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controllin...The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.展开更多
Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral c...Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.展开更多
基金funded by the subproject of the National Science and Technology Major Project(No.2017ZX05036004).
文摘Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.
基金The authors acknowledge financial support from National Science and Technology Major Project of China(No.2016ZX05001-002)Important National Science and Technology Project of CNPC(No.2021DJ0202).
文摘The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality differences and origins of different types of source rocks in the Shahezi Formation,this study reconstructed the sedimentary and water environment,determined the controlling effects of fault activity,sedimentary facies,and paleo-sedimentary environment on the quality of various source rocks,by making full use of seismic,logging,core,organic geochemical and element geochemical analysis.The results show that two types of source rocks developed in the Shahezi Formation,namely,mudstones and coals.The mudstones have a relatively high abundance of organic matter,which consists of type-Ⅱ kerogen and partial type-Ⅲ kerogen,and are concentrated in Sha-I Member.The coals have a high abundance of organic matter,which consist of type-Ⅲ kerogen,and are mainly distributed in Sha-Ⅱ Member.During the deposition of Sha-I Member,intense fault activity formed arrow,deep-water lacustrine basins with high salinity and strong reducibility on the downthrow sides of faults.During the deposition of Sha-II Member,fault activity progressively weakened,and the areas of lacustrine basins enlarged to their maximum values and became wide,shallow-water basins with low salinity and low reducibility.The development of source rocks was controlled by fault activity,sedimentary facies,and paleo-sedimentary environment.Fault activity formed accommodation space on the downthrown sides of faults for mudstone accumulation,thus determining mudstone thickness.The sedimentary environment controlled the organic matter input and determined the distribution of mudstones and coals.The paleo-sedimentary environment,which consisted of paleo-salinity,as well as paleo-water depth and redox conditions,affected the accumulation and preservation of organic matter and is the main controlling factor for the quality difference of various source rocks in the Shahezi Formation.
基金Supported by the Scientific Research and Technology Development Project of PetroChina (2021DJ04,2021DJ0401)。
文摘Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance.
基金Supported by the the National Natural Science Foundation of China(U22A201550).
文摘On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
基金partly supported by the Joint Research Fund in Astronomy (grant Nos. U1931101, 42364001) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS)the National Natural Science Foundation of China (NSFC, Grant No. 11933008)+3 种基金the Guizhou Provincial Science and Technology Foundation (grant Nos.[2020]1Y017, ZK[2022]322)the Foundation of Education Bureau of Guizhou Province,China (grant No. KY (2020) 003)partially supported by the Open Project Program of the CAS Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciencesthe TESS team for its support。
文摘In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmetric LCs,cool starspots on the components were employed.It is suggested that their fill-out degrees are f=12.0%(LX Lyn) and f=26.3%(V0853 Aur).At the same time,we found that LX Lyn is a W-type eclipsing binary(EB) with an orbital inclination of i=84°.88 and a mass ratio of q=2.31.V0853 Aur is also a W-type CEB with a mass ratio of q=2.77 and an orbital inclination of i= 79°.26.Based on all available times of light minimum,their orbital period changes are studied by using the O-C method.The O-C diagram of LX Lyn reveals a cyclic oscillation with a period of about 14.84 yr and an amplitude of 0.0019 days,which can be explained by the light-travel time effect(LTTE) due to the presence of a third body with a minimum mass of0.06M_⊙.For V0853 Aur,it is discovered that the O-C diagram of the system also shows a cyclic oscillation with a period of 9.64 yr and an amplitude of 0.03365 days.The cyclic oscillation of V0853 Aur can be attributed to the LTTE by means of a third body with a mass no less than 3.77M_⊙.The third body may play an important role in the formation and evolution of these systems.
基金Project(U1232103)supported by the Joint Funds of National Natural Science Foundation of China and Large Scientific Facility Foundation of Chinese Academy of SciencesProject(51274257)supported by the National Natural Science Foundation of China+2 种基金Project(CX2014B092)supported by Hunan Provincial Innovation Foundation For Postgraduate,ChinaProject(VR-12419)supported by Beijing Synchrotron Radiation Facility Public User Program,ChinaProjects(13SRBL15U13024,13SRBL14B13023)supported by the Open Funds of Shanghai Synchrotron Radiation Facility,China
文摘The formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis were analyzed by combining synchrotron radiation X-ray diffraction(SR-XRD) and S, Fe and Cu Kα X-ray absorption near edge structure(XANES) spectroscopy. Leaching experiment showed that 82.4% of Cu2+ was dissolved by A. manzaensis after 10 d. The surface of chalcopyrite was corroded apparently and covered with leaching products. During bioleaching, the formation and evolution of secondary minerals were as follows: 1) little elemental sulfur, jarosite, bornite and chalcocite were found at days 2 and 4; and 2) bornite and chalcocite disappeared, covellite formed, and jarosite gradually became the main component at days 6 and 10. These results indicated that metal-deficiency sulfides chalcocite and bornite were first formed with a low redox potential value(360-461 m V), and then gradually transformed to covellite with a high redox potential value(461-531 m V).
基金Supported by the National Natural Science Foundation of China(U19B6003-01).
文摘The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.
基金financially supported by the National Natural Science Foundation of China (grant No.41502147)Sichuan Province University Scientific Innovation Team Construction Project (USITCP)+1 种基金the Yong Scholars Development Fund of SWPU (grant No.201499010089)the National Science and Technology Major Project (grant No.2011ZX05001-001-04)
文摘This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.
基金Supported by the Qingdao National Laboratory for Marine Science and Technology(Nos.QNLM201708,QNLM2016ORP0206)the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology(Nos.2017ASKJ02,2017ASKJ01,2016ASKJ13)+2 种基金the Special Fund for Land&Resources Scientific Research in the Public Interest(No.201511037)the Natural Science Foundation of Shandong Province of China(No.ZR2016DB33)the National Key Research and Development Program(No.2017YFC0306706-04)
文摘Analysis of 2 D seismic data over 4 500 km in length from the Madura Strait Basin in the East Java Sea reveals seismic re?ection characteristics of reefs and associated sedimentary bodies, including asymmetrical or symmetrical dome re?ections, slope progradational re?ections, chaotic re?ections and discontinuous strong re?ections inside the reef, which onlap the ?ank of the reef. It is concluded that the developmental paleo-environment of most reefs is mainly conducive to shallow marine carbonate platform facies and platform margin facies, based on well core data, variations in seismic facies and strata thickness.The formation and evolution of all reefs are primarily in?uenced by the tectonic framework of the Madura Strait Basin. Platform margin reefs are principally controlled by two types of structures: one is a series of E-W trending Paleogene normal faults, and the other is an E-W trending Neogene inversion structures. In addition, wave actions, tidal currents and other ocean currents play an accelerated role in sorting, rounding and redeposition for the accumulation and evolution of reefs. Tertiary reefs in the MSB can be divided into four types: 1) an open platform coral reef of Late Oligocene to Early Miocene, 2) a platform margin coral reef controlled by normal faults in Late Oligocene to Early Miocene, 3) a platform margin Globigerina moundreef controlled by a "hidden" inversion structure in Early Pliocene, and 4) a platform margin Globigerina mound-reef controlled by thrust faults in the early Pliocene. Patterns of the formation and evolution of reefs are also suggested.
基金supported by Natural Science Foundation of Gansu Province (0803RJZH086)National Natural Science Foundation of China (40961013)
文摘The ancient aeolian sand has been regarded as an indicator for the formation and evolution of a desert in the past.Kumtagh Desert is located at the northern fringe of Qinghai-Tibet Plateau.The first integrated scientific investigation to the desert was carried out during the period of 2004-2006.Kumtagh Desert is an ideal natural model for studying the formation and evolution of the desert because the Quaternary strata containing ancient aeolian sands are widely distributed.The integrated field investigation and studies on sedimentary,chronology and palynology of typical profiles named Suosuo gully,Xiaoquan gully and gravel body with ancient aeolian sand layers showed that Kumtagh Desert was probably formed as early as 2,097.7±314.7 ka BP.During the period of 386.9±58.0 ka BP to 285.9±42.9 ka BP,the desert largely expanded and formed its modern distribution pattern.The desert was originally developed in the southwest,subsequently,expanded to the north and northeast.The sedimentary facies of Suosuo gully profile revealed that the desert experienced at least 19 cycles of advance and inverse processes of desertification with an average period of 110 ka in the Quaternary.The neotectonic movements played an important role in the formation,development and geomorphology of the desert.On one hand,the movements caused the formation of intermontane fault basin,which was further developed towards the closed drought basin,and caused the formation of natural environment.On the other hand,under the control of surrounding faults,the unique broom-shaped desert landscape was formed,and the gullies and sand ridges in this region experienced an abrupt directional change from north by west to north by east at the location of 39°45'-39°55'N.The unique landscape of gravel body that occurred widely in the northern desert was formed after 285.9±42.9 ka BP.The results in this paper provide the scientific basis for studying the formation age and evolutionary process under the dry climate and environment in the northwestern China,and the uplifting of Qinghai-Tibet Plateau as well as its responses to the global climate changes.
文摘The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied. Through petrologic investigation, diagenetic phases are divided into four stages, i.e., near-surface, pre-oil window, oil window, and gas window. The Adobe Photoshop system is used to quantify the rock texture components, porosity constitutions and the influences of diageneses on reservoir porosity. Porosity evolution curves are quantitatively recovered. The Feixianguan reservoir porosities are mainly created by early meteoric dissolution, dolomitization, and organic acids dissolution. Dissolution during deep burial is insignificant. Pores are formed in near-surface and pre-oil window stages and effectively preserved till present. This result may be of great significance to the further exploration of deeply buried carbonate reservoirs not only in NE Sichuan Basin, but also around the world.
基金financially supported by the National Natural Science Foundation of China(grant No.41302061)
文摘Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
基金financially supported by the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41773020)
文摘Objective The Susong complex zone(SCZ)is a relatively lowgrade metamorphic unit mostly with an epidoteamphibolite facies,located in the southernmost part of the Dabie orogen.However,its rock compositions,ages,
基金The National Natural Science Foundation under contract Nos 41502142 and 41502110the National Science and Technology Major Project under contract No.2016ZX05026-007-05the Youth Innovation Promotion Association CAS
文摘The Oligocene Huagang Formation is the main sandstone reservoir in the Xihu Sag, situated in the east of the East China Sea Shelf Basin. With an integrated approach of thin-section petrography, ultra-violet fluorescence microscopy, scanning electron microscopy, and isotope geochemistry, the different diagenetic features were identified, the typical diagenetic parasequences were established, and the diagenetic fluids evolution history were reconstructed for the Oligocene Huagang Formation sandstone reservoir in the south of Xihu Sag. The Huagang Formation sandstone reservoir is now in Period B of the mesodiagenesis, which has undergone significant diagenetic alterations such as mechanical compaction, Pore-lining chlorite cement, feldspar dissolution, quartz cementation and dissolution, and carbonate cementation. Three types of carbonate cements(early siderite,medium ferrocalcite and late ankerite) were identified in the Huagang Formation sandstone reservoir. The carbon and oxygen isotopic compositions of carbonate cements show that the early calcite precipitate from alkaline lacustrine environment whereas the late carbonate cements were closely related to the organic acids. To the Huagang Formation sandstone reservoir, it has experienced two main episodes of dissolution during diagenesis.The early dissolution is that unstable components such as feldspar, lithic fragments, and carbonate cement were dissolved by acidic water. The second dissolution is that quartz and other silicate minerals were dissolved under the alkaline condition. Two main phases of hydrocarbon charging occurred in this study area. The first hydrocarbon emplacement was prior to the medium carbonate cementation but posterior to feldspar dissolution and the onset of quartz cementation at the end of the Miocene. The second hydrocarbon charging occurred in the Quaternary period after the late carbonate precipitation.
基金granted by the Geological Survey Program of China Geological Survey (Grant No.1212011086074 and 12120113036500)
文摘The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metallogenic belt. Till now, several large and super large copper-gold deposits, such as Duobuza, Bolong, Dibaonamugang, Naruo and Rongna deposits have been discovered in this area, mainly porphyry copper-gold ones.
基金Petro China-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX010000)。
文摘Based on comprehensive analysis of cores,thin sections,logging and seismic data,the sequence stratigraphy and sedimentary evolution of the third and fourth members of Sinian Dengying Formation(Deng 3 and Deng 4 members for short)in the Gaomo area of Sichuan Basin were investigated,and the favorable zones for reservoir development in the Deng 3 Member and Deng 4 Member were predicted.(1)Two Type I and one Type II sequence boundaries are identified in the Deng 3 and Deng 4 members.Based on the identified sequence boundaries,the Deng 3 and Deng 4 members can be divided into two third order sequences SQ3 and SQ4,which are well-developed,isochronal and traceable in this area;the SQ3 thins from west to the east,and the SQ4 thins from northwest to southeast.(2)The sedimentary environment from the depositional period of SQ3 to SQ4 has experienced the evolution from mixed platform to rimmed platform,and the platform rimmed system on the west side is characterized by the development of platform margin microbial mound and grain shoal assemblages.The intraplatform area is a restricted platform facies composed of a variety of dolomites,and there are local micro-geomorphic highlands of different scales and scattered intraplatform mounds and shoals.(3)The Deng 4 Member reservoirs,with obvious facies-controlled characteristic,are mainly distributed in the upper part of high-frequency upward shallow cycle and the high-stand systems tract of the third-order sequence vertically,and are more developed in the platform margin belt than in the intraplatform belt,and more developed in the Gaoshiti platform margin belt than in the west Suining platform margin belt on the plane.(4)Three types of favorable reservoir zones of Deng 4 Member have been finely delineated with 3D seismic data;among them,the mound and shoal facies zones developed in the ancient highlands of the intraplatform are the first choice for the next exploration and development of the Deng 4 Member.
文摘Nebula theory is the most widely accepted hypothesis about the formation and evolution of the Solar System. This theoryholds that the Sun is formed from a collapsed gas cloud 4.57 billion years ago;when the core temperature of the gas cloud rises to 10million K, the thermonuclear reaction of hydrogen fusion into helium is ignited, then the Sun become a star;once the hydrogen in thecore is exhausted, the life of the star will end. But the limited hydrogen element obviously cannot satisfy such a long-termthermonuclear reaction, in order to sustain long-term thermonuclear reactions, a steady stream of fuel must be obtained from space.So the existing hypothesis about the formation and evolution of the Solar System has serious defects. Thus the author has studied theformation of the Moon, the Earth and the Sun, and discovered the formation of the Sun and the real source of star energy. The authorcould also explain many solar activity phenomena such as sunspots, flares, prominences, etc.
基金Supported by the China National Science and Technology Major Project (2016ZX05006-006)
文摘The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.
文摘Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.