In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In ...Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.展开更多
By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive soluti...By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive solution and a negative solution are obtained respectively, so as to popularize and improve some results that have been known.展开更多
Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + ...Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc.展开更多
This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are i...This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are introduced. A number of numerical examples are used to study the applicability of the method.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geom...This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New ...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our ...The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.展开更多
This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some...This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.展开更多
In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractio...In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.展开更多
The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples ...The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.展开更多
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approxi...A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.展开更多
Recently the new unique classes of hyperbolic functions-hyperbolic Fibonacci functions based on the “golden ratio”, and hyperbolic Fibonacci l-functions based on the “metallic proportions” (l is a given natural nu...Recently the new unique classes of hyperbolic functions-hyperbolic Fibonacci functions based on the “golden ratio”, and hyperbolic Fibonacci l-functions based on the “metallic proportions” (l is a given natural number), were introduced in mathematics. The principal distinction of the new classes of hyperbolic functions from the classic hyperbolic functions consists in the fact that they have recursive properties like the Fibonacci numbers (or Fibonacci l-numbers), which are “discrete” analogs of these hyperbolic functions. In the classic hyperbolic functions, such relationship with integer numerical sequences does not exist. This unique property of the new hyperbolic functions has been confirmed recently by the new geometric theory of phyllotaxis, created by the Ukrainian researcherOleg Bodnar(“Bodnar’s hyperbolic geometry). These new hyperbolic functions underlie the original solution of Hilbert’s Fourth Problem (Alexey Stakhov and Samuil Aranson). These fundamental scientific results are overturning our views on hyperbolic geometry, extending fields of its applications (“Bodnar’s hyperbolic geometry”) and putting forward the challenge for theoretical natural sciences to search harmonic hyperbolic worlds of Nature. The goal of the present article is to show the uniqueness of these scientific results and their vital importance for theoretical natural sciences and extend the circle of readers. Another objective is to show a deep connection of the new results in hyperbolic geometry with the “harmonic ideas” of Pythagoras, Plato and Euclid.展开更多
We suggest an original approach to Lobachevski’s geometry and Hilbert’s Fourth Problem, based on the use of the “mathematics of harmony” and special class of hyperbolic functions, the so-called hyperbolic Fibonacc...We suggest an original approach to Lobachevski’s geometry and Hilbert’s Fourth Problem, based on the use of the “mathematics of harmony” and special class of hyperbolic functions, the so-called hyperbolic Fibonacci l-functions, which are based on the ancient “golden proportion” and its generalization, Spinadel’s “metallic proportions.” The uniqueness of these functions consists in the fact that they are inseparably connected with the Fibonacci numbers and their generalization― Fibonacci l-numbers (l > 0 is a given real number) and have recursive properties. Each of these new classes of hyperbolic functions, the number of which is theoretically infinite, generates Lobachevski’s new geometries, which are close to Lobachevski’s classical geometry and have new geometric and recursive properties. The “golden” hyperbolic geometry with the base (“Bodnar’s geometry) underlies the botanic phenomenon of phyllotaxis. The “silver” hyperbolic geometry with the base ?has the least distance to Lobachevski’s classical geometry. Lobachevski’s new geometries, which are an original solution of Hilbert’s Fourth Problem, are new hyperbolic geometries for physical world.展开更多
By mixed monotone method, we establish the existence and uniqueness of positive solutions for fourth-order nonlinear singular Sturm-Liouville problems. The theorems obtained are very general and complement previously ...By mixed monotone method, we establish the existence and uniqueness of positive solutions for fourth-order nonlinear singular Sturm-Liouville problems. The theorems obtained are very general and complement previously known results.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
In this paper,we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems(SBVPs)driven by additive white noises.First we regularize the noise by the Wong-Zakai approxim...In this paper,we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems(SBVPs)driven by additive white noises.First we regularize the noise by the Wong-Zakai approximation and introduce a sequence of linear second-order SBVPs.We prove that the solution of the SBVP with regularized noise converges to the solution of the original SBVP with convergence order O(h)in the meansquare sense.To obtain a numerical solution,we apply the finite difference method to the stochastic BVP whose noise is piecewise constant approximation of the original noise.The approximate SBVP with regularized noise is shown to have better regularity than the original problem,which facilitates the convergence proof for the proposed scheme.Convergence analysis is presented based on the standard finite difference method for deterministic problems.More specifically,we prove that the finite difference solution converges at O(h)in the mean-square sense,when the second-order accurate three-point formulas to approximate the first and second derivatives are used.Finally,we present several numerical examples to validate the efficiency and accuracy of the proposed scheme.展开更多
The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with pi...The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.展开更多
Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds t...Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds themselves are proved. Two other explicit formulae which express the third and fourth kinds Chebyshev expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of their original expansion coefficients are also given. Two new reduction formulae for summing some terminating hypergeometric functions of unit argument are deduced. As an application of how to use Chebyshev polynomials of the third and fourth kinds for solving high-order boundary value problems, two spectral Galerkin numerical solutions of a special linear twelfth-order boundary value problem are given.展开更多
The purpose of this article is to extend some spectral properties of regular Sturm- Liouville problems to the special type discontinuous boundary-value problem, which consists of a Sturm-Liouville equation together wi...The purpose of this article is to extend some spectral properties of regular Sturm- Liouville problems to the special type discontinuous boundary-value problem, which consists of a Sturm-Liouville equation together with eigenparameter-dependent boundary conditions and two supplementary transmission conditions. We construct the resolvent operator and Green's function and prove theorems about expansions in terms of eigenfunctions in modified Hilbert space L2[a, b].展开更多
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
基金Project supported by the National Natural Science Foundation of China (Nos.10372016 and 10672022)
文摘Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.
文摘By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive solution and a negative solution are obtained respectively, so as to popularize and improve some results that have been known.
文摘Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc.
文摘This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are introduced. A number of numerical examples are used to study the applicability of the method.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.
基金The 985 Program of Jilin Universitythe Science Research Foundation for Excellent Young Teachers of College of Mathematics at Jilin University
文摘This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.
基金supported by the National Natural Science Foundation of China (No. 10671182)
文摘In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.
基金The Postdoctoral Science Research Foundation of Zhengzhou University.
文摘The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.
文摘A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.
文摘Recently the new unique classes of hyperbolic functions-hyperbolic Fibonacci functions based on the “golden ratio”, and hyperbolic Fibonacci l-functions based on the “metallic proportions” (l is a given natural number), were introduced in mathematics. The principal distinction of the new classes of hyperbolic functions from the classic hyperbolic functions consists in the fact that they have recursive properties like the Fibonacci numbers (or Fibonacci l-numbers), which are “discrete” analogs of these hyperbolic functions. In the classic hyperbolic functions, such relationship with integer numerical sequences does not exist. This unique property of the new hyperbolic functions has been confirmed recently by the new geometric theory of phyllotaxis, created by the Ukrainian researcherOleg Bodnar(“Bodnar’s hyperbolic geometry). These new hyperbolic functions underlie the original solution of Hilbert’s Fourth Problem (Alexey Stakhov and Samuil Aranson). These fundamental scientific results are overturning our views on hyperbolic geometry, extending fields of its applications (“Bodnar’s hyperbolic geometry”) and putting forward the challenge for theoretical natural sciences to search harmonic hyperbolic worlds of Nature. The goal of the present article is to show the uniqueness of these scientific results and their vital importance for theoretical natural sciences and extend the circle of readers. Another objective is to show a deep connection of the new results in hyperbolic geometry with the “harmonic ideas” of Pythagoras, Plato and Euclid.
文摘We suggest an original approach to Lobachevski’s geometry and Hilbert’s Fourth Problem, based on the use of the “mathematics of harmony” and special class of hyperbolic functions, the so-called hyperbolic Fibonacci l-functions, which are based on the ancient “golden proportion” and its generalization, Spinadel’s “metallic proportions.” The uniqueness of these functions consists in the fact that they are inseparably connected with the Fibonacci numbers and their generalization― Fibonacci l-numbers (l > 0 is a given real number) and have recursive properties. Each of these new classes of hyperbolic functions, the number of which is theoretically infinite, generates Lobachevski’s new geometries, which are close to Lobachevski’s classical geometry and have new geometric and recursive properties. The “golden” hyperbolic geometry with the base (“Bodnar’s geometry) underlies the botanic phenomenon of phyllotaxis. The “silver” hyperbolic geometry with the base ?has the least distance to Lobachevski’s classical geometry. Lobachevski’s new geometries, which are an original solution of Hilbert’s Fourth Problem, are new hyperbolic geometries for physical world.
文摘By mixed monotone method, we establish the existence and uniqueness of positive solutions for fourth-order nonlinear singular Sturm-Liouville problems. The theorems obtained are very general and complement previously known results.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金partially supported by the NASA Nebraska Space Grant Program and UCRCA at the University of Nebraska at Omaha.
文摘In this paper,we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems(SBVPs)driven by additive white noises.First we regularize the noise by the Wong-Zakai approximation and introduce a sequence of linear second-order SBVPs.We prove that the solution of the SBVP with regularized noise converges to the solution of the original SBVP with convergence order O(h)in the meansquare sense.To obtain a numerical solution,we apply the finite difference method to the stochastic BVP whose noise is piecewise constant approximation of the original noise.The approximate SBVP with regularized noise is shown to have better regularity than the original problem,which facilitates the convergence proof for the proposed scheme.Convergence analysis is presented based on the standard finite difference method for deterministic problems.More specifically,we prove that the finite difference solution converges at O(h)in the mean-square sense,when the second-order accurate three-point formulas to approximate the first and second derivatives are used.Finally,we present several numerical examples to validate the efficiency and accuracy of the proposed scheme.
文摘The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.
文摘Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds themselves are proved. Two other explicit formulae which express the third and fourth kinds Chebyshev expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of their original expansion coefficients are also given. Two new reduction formulae for summing some terminating hypergeometric functions of unit argument are deduced. As an application of how to use Chebyshev polynomials of the third and fourth kinds for solving high-order boundary value problems, two spectral Galerkin numerical solutions of a special linear twelfth-order boundary value problem are given.
文摘The purpose of this article is to extend some spectral properties of regular Sturm- Liouville problems to the special type discontinuous boundary-value problem, which consists of a Sturm-Liouville equation together with eigenparameter-dependent boundary conditions and two supplementary transmission conditions. We construct the resolvent operator and Green's function and prove theorems about expansions in terms of eigenfunctions in modified Hilbert space L2[a, b].