期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Two Energy-Preserving Compact Finite Difference Schemes for the Nonlinear Fourth-Order Wave Equation
1
作者 Xiaoyi Liu Tingchun Wang +1 位作者 Shilong Jin Qiaoqiao Xu 《Communications on Applied Mathematics and Computation》 2022年第4期1509-1530,共22页
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from... In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties. 展开更多
关键词 Nonlinear fourth-order wave equation compact finite difference scheme Error estimate Energy conservation Iterative algorithm
下载PDF
Compact Finite Difference Scheme for the Fourth-Order Fractional Subdiffusion System 被引量:3
2
作者 Seakweng Vong Zhibo Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2014年第4期419-435,共17页
In this paper,we study a high-order compact difference scheme for the fourth-order fractional subdiffusion system.We consider the situation in which the unknown function and its first-order derivative are given at the... In this paper,we study a high-order compact difference scheme for the fourth-order fractional subdiffusion system.We consider the situation in which the unknown function and its first-order derivative are given at the boundary.The scheme is shown to have high order convergence.Numerical examples are given to verify the theoretical results. 展开更多
关键词 fourth-order fractional subdiffusion equation compact difference scheme energy method STABILITY CONVERGENCE
原文传递
A Compact Difference Scheme for Time-Space Fractional Nonlinear Diffusion-Wave Equations with Initial Singularity
3
作者 Emadidin Gahalla Mohmed Elmahdi Sadia Arshad Jianfei Huang 《Advances in Applied Mathematics and Mechanics》 SCIE 2024年第1期146-163,共18页
In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solutio... In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solution is considered,which often generates a singular source and increases the difficulty of numerically solving the equation.The Crank-Nicolson technique,combined with the midpoint formula and the second-order convolution quadrature formula,is used for the time discretization.To increase the spatial accuracy,a fourth-order compact difference approximation,which is constructed by two compact difference operators,is adopted for spatial discretization.Then,the unconditional stability and convergence of the proposed scheme are strictly established with superlinear convergence accuracy in time and fourth-order accuracy in space.Finally,numerical experiments are given to support our theoretical results. 展开更多
关键词 Fractional nonlinear diffusion-wave equations finite difference method fourth-order compact operator STABILITY CONVERGENCE
原文传递
二维椭圆问题的经济外推瀑布多重网格法 被引量:4
4
作者 李明 赵金娥 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第7期68-72,共5页
针对二维椭圆问题,首先提出九点紧致中心差分(NCCD)格式,并讨论该格式的截断误差.接着,提出了基于NCCD格式下的经济外推瀑布多重网格(EEXCMG)法,其中使用新外推公式和三次多项式插值算子给相邻细网格层提供初始值,并在各网格层上采用经... 针对二维椭圆问题,首先提出九点紧致中心差分(NCCD)格式,并讨论该格式的截断误差.接着,提出了基于NCCD格式下的经济外推瀑布多重网格(EEXCMG)法,其中使用新外推公式和三次多项式插值算子给相邻细网格层提供初始值,并在各网格层上采用经济的磨光策略.数值实验验证了NCCD格式的四阶精度和EEXCMG法的有效性. 展开更多
关键词 紧致中心差分格式 新外推公式 经济的磨光策略 经济外推瀑布多重网格法
下载PDF
求解抛物型方程的一种高精度紧致差分格式 被引量:1
5
作者 杨晓佳 魏剑英 《湖北大学学报(自然科学版)》 CAS 2016年第2期160-167,171,共9页
利用四阶Padé逼近公式和扩展的1/3-Simpson公式,构造一种求解一维抛物型方程的高精度紧致隐式差分格式,其截断误差为O(τ4+h4).然后通过理论分析证明此格式是无条件稳定的,并通过数值实验验证本文中格式的精确性和可靠性.
关键词 抛物型方程 高精度紧致格式 无条件稳定 扩展的1/3-Simpson公式 PADÉ逼近
下载PDF
一维抛物型方程的四阶紧致差分-MG算法
6
作者 王慧蓉 《长治学院学报》 2010年第2期69-70,共2页
文章提出了数值求解一维抛物型方程的四阶紧致差分-MG算法,用Forier方法证明该格式是无条件稳定的.并且利用了多重网格方法,采用数值试验验证了方法的精确性与可靠性。
关键词 一维抛物型方程 四阶紧致差分 多重网格法
下载PDF
一维抛物型方程的ETF-FDS四-阶紧致差分-MG算法
7
作者 王慧蓉 《太原科技大学学报》 2011年第3期246-249,共4页
将ETF-FDS格式和四阶紧致差分格式应用于一维抛物型方程,提出了ETF-FDS四-阶紧致差分-MG格式,用傅里叶方法证明该格式是无条件稳定的,并使用了多重网格法。最后用数值试验验证了方法的精确性与可靠性。
关键词 一维抛物型方程 ETF-FDS格式 四阶紧致差分 多重网格法
下载PDF
分数阶波方程的数值解法 被引量:1
8
作者 王芳芳 陈安 《应用数学与计算数学学报》 2015年第2期171-186,共16页
首先,把分数阶波方程转换成等价的积分-微分方程;然后,利用带权的分数阶矩形公式和紧差分算子分别对时间和空间方向进行离散.证明了当权重为1/2时,时间方向的收敛阶为α,其中α(1<α<2)为Caputo导数的阶数.利用Gronwall不等式,证... 首先,把分数阶波方程转换成等价的积分-微分方程;然后,利用带权的分数阶矩形公式和紧差分算子分别对时间和空间方向进行离散.证明了当权重为1/2时,时间方向的收敛阶为α,其中α(1<α<2)为Caputo导数的阶数.利用Gronwall不等式,证明了数值格式的收敛性和稳定性.数值例子进一步表明了数值格式的有效性. 展开更多
关键词 分数阶波方程 带权的分数阶矩形公式 紧差分算子 GRONWALL不等式
下载PDF
求解对流扩散方程的4阶紧致差分格式 被引量:1
9
作者 李冉冉 王红玉 开依沙尔·热合曼 《江西师范大学学报(自然科学版)》 CAS 北大核心 2022年第5期517-522,共6页
该文提出了在周期和Dirichlet边界条件下的1维对流扩散方程的紧致差分格式.在这2种边界条件下对空间变量使用4阶紧致差分格式,对时间变量利用3次Hermite插值公式构造空间和时间同时具有4阶精度的数值格式,并证明了格式的绝对稳定性,最... 该文提出了在周期和Dirichlet边界条件下的1维对流扩散方程的紧致差分格式.在这2种边界条件下对空间变量使用4阶紧致差分格式,对时间变量利用3次Hermite插值公式构造空间和时间同时具有4阶精度的数值格式,并证明了格式的绝对稳定性,最后通过对2种边界条件下的算例进行数值实验和比较,验证了格式的精确性和可靠性. 展开更多
关键词 对流扩散方程 紧致差分格式 HERMITE插值 DIRICHLET边界条件
下载PDF
求解一维对流扩散方程的高精度紧致差分格式 被引量:5
10
作者 开依沙尔.热合曼 阿孜古丽.牙生 祖丽皮耶.如孜 《佳木斯大学学报(自然科学版)》 CAS 2014年第1期135-138,共4页
对空间变量四阶紧致格式进行离散,时间变量保持不变,把一维对流扩散方程转化为常微分方程组的初值问题,再利用梯形方法构造对流扩散方程的时间二阶空间四阶精度的一种差分格式,并稳定性进行分析,数值结果与Crank-Nicholson格式进行比较... 对空间变量四阶紧致格式进行离散,时间变量保持不变,把一维对流扩散方程转化为常微分方程组的初值问题,再利用梯形方法构造对流扩散方程的时间二阶空间四阶精度的一种差分格式,并稳定性进行分析,数值结果与Crank-Nicholson格式进行比较,数值结果表明。 展开更多
关键词 对流扩散方程 高精度紧致差分格式 梯形公式 Crank—Nicolson格式
下载PDF
An Efficient Cartesian Grid-Based Method for Scattering Problems with Inhomogeneous Media
11
作者 Haixia Dong Wenjun Ying Jiwei Zhang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第2期541-564,共24页
Boundary integral equations provide a powerful tool for the solution of scattering problems.However,often a singular kernel arises,in which case the standard quadratures will give rise to unavoidable deteriorations in... Boundary integral equations provide a powerful tool for the solution of scattering problems.However,often a singular kernel arises,in which case the standard quadratures will give rise to unavoidable deteriorations in numerical precision,thus special treatment is needed to handle the singular behavior.Especially,for inhomogeneous media,it is difficult if not impossible to find out an analytical expression for Green’s function.In this paper,an efficient fourth-order accurate Cartesian grid-based method is proposed for the two-dimensional Helmholtz scattering and transmission problems with inhomogeneous media.This method provides an alternative approach to indirect integral evaluation by solving equivalent interface problems on Cartesian grid with a modified fourth-order accurate compact finite difference scheme and a fast Fourier transform preconditioned conjugate gradient(FFT-PCG)solver.A remarkable point of this method is that there is no need to know analytical expressions for Green’s function.Numerical experiments are provided to demonstrate the advantage of the current approach,including its simplicity in implementation,its high accuracy and efficiency. 展开更多
关键词 Transmission problem inhomogeneous media Cartesian grid-based method modified fourth-order compact difference scheme fast Fourier transform preconditioned conjugate gradient solver.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部