Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-l...Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope.展开更多
[Objective]The ecological vulnerability and landscape ecological risk of karst mountainous areas have increased as a result of enhanced disturbance of natural resources by human activities.This paper aimed to explore ...[Objective]The ecological vulnerability and landscape ecological risk of karst mountainous areas have increased as a result of enhanced disturbance of natural resources by human activities.This paper aimed to explore the characteristics of ecological risk evolution under different landscape patterns in the region,with a view to providing reference for land classification protection,sustainable use of resources and regional ecological risk optimization in karst mountainous areas.[Method]Taking Huangping County,a typical karst mountainous area,as an example,eight evaluation factors of natural and landscape patterns were selected to construct a landscape ecological risk evaluation model,to quantitatively explore the spatio-temporal evolution of landscape ecological risk and the trend of risk level transfer in the study area from^(2)010-2018,and to reveal the complex relationship between ecological risk and topography in karst mountainous areas.[Result]①From 2010 to 2018,land use types changed to different degrees,with the most amount of woodland transferred out(1627.37 hm^(2))and the most amount of construction land transferred in(1303.93 hm^(2));a total of 3552.31 hm^(2) of land was transferred,with a change ratio of 2.13%,and there was a significant conversion between construction land,arable land,and woodland.②From 2010 to 2018,the landscape ecological risk in the study area changed significantly,and the landscape ecological risk index decreased from 0.3441 to 0.1733,showing an upward and then downward trend;the landscape ecological risk of the whole region was dominated by low-risk and lower-risk zones,and the ecological risk level generally shifted from a high level to a low level,and the ecological environment was improved.③There was a negative correlation between ecological risk and topographic position,and high-risk zones were mainly distributed among low topographic zones;with the change of time,the advantage of risk level for the selection of topography was gradually weakened,and the influence of anthropogenic factors on the ecological risk of the landscape was becoming more and more prominent.[Conclusion]This paper can provide theoretical basis for land use optimization and ecological protection in karst mountainous areas.展开更多
Ecological security is the main task and applied field of present geography, resources and environment sciences and ecology. Ecological security evaluation will efficiently promote ecological security and environmenta...Ecological security is the main task and applied field of present geography, resources and environment sciences and ecology. Ecological security evaluation will efficiently promote ecological security and environmental construction in regional land use. In this thesis, the authors put forward the index system of ecological security evaluation in karst mountainous area on three aspects, the pressure of resources and eco-environment, the quality of resources and eco-environment, and the ability of environmental protection and ecological improvement. Using the evaluation method with single index, based on the case study ofDu'an Yao Autonomous County of Guangxi Zhuang Autonomous Region, the system of synthetic regionalization of ecological agricultural economy was formed, which includes three regions, south region with basic security and synthetic agricultural development, east region with critical security and agriculture, forestry, animal husbandry balanced development, mid-west and south region with ecological insecurity and compounded agriculture and forestry management. Meanwhile, for these regions, the countermeasures of sustainable agricultural development were pointed out, which provide the basis and example for ecological regulation and control of sustainable agricultural development in counties ofkarst mountainous area.展开更多
Meteorological conditions have an important impact on changes of vegetation in ecologically fragile karst areas.This study aims to explore a method for quantitative evaluation of these meteorological conditions. We an...Meteorological conditions have an important impact on changes of vegetation in ecologically fragile karst areas.This study aims to explore a method for quantitative evaluation of these meteorological conditions. We analyzed the changing trend of vegetation during 2000–2018 and the correlations between vegetation changes and various meteorological factors in karst rocky areas of Guangxi Zhuang Autonomous Region, China. Key meteorological factors in vegetation areas with varying degrees of improvement were selected and evaluated at seasonal timescale. A quantitative evaluation model of comprehensive influences of meteorological factors on vegetation was built by using the partial least-square regression(PLS). About 91.45% of the vegetation tended to be improved, while only the rest 8.55% showed a trend of degradation from 2000 to 2018. Areas with evident vegetation improvement were mainly distributed in the middle and northeast, and those with obvious vegetation degradation were scattered. Meteorological factors affecting vegetation were significantly different among the four seasons. Overall, high air humidity, small temperature difference in spring and autumn, and low daily minimum temperature and air pressure were favorable conditions. Low temperature in winter as well as high temperature in summer and autumn were unfavorable conditions. The Climate Vegetation Index(CVI) model was established by PLS using the maximum, minimum, and average temperatures;vapor pressure;rainfall;and air pressure as key meteorological factors. The Enhanced Vegetation Index(EVI) was well fitted by the CVI model, with the average coefficient of determination(r2) and root mean square error(RMSE) of 0.856 and 0.042, respectively. Finally, an assessment model of comprehensive meteorological conditions was built based on the interannual differences in CVI. The meteorological conditions in the study area in 2014 were successfully evaluated by combining the model and selected seasonal key meteorological factors.展开更多
以开远市为例,从生态系统服务和生态脆弱性视角,构建生态安全格局并识别生态修复关键区域;以生态问题指数识别生态修复关键区内存在的生态问题,划定生态修复分区并提出相应的修复策略.研究表明:(1)开远市生态安全格局由两种源地和两类...以开远市为例,从生态系统服务和生态脆弱性视角,构建生态安全格局并识别生态修复关键区域;以生态问题指数识别生态修复关键区内存在的生态问题,划定生态修复分区并提出相应的修复策略.研究表明:(1)开远市生态安全格局由两种源地和两类廊道构成.其中生态保护源地和生态修复源地的面积分别为190.53和16.82km^(2),潜在生态廊道和修复廊道总长分别为191.15和75.71km.(2)基于生态安全格局提取开远市生态修复关键区域,包括15个生态修复源地、12条修复廊道、31个生态夹点和11个障碍区.生态修复关键区域内石漠化主要集中于开远市西部和南部,西部石漠化程度较南部更高;土壤侵蚀以微度侵蚀为主;地质灾害多发于采矿区以及喀斯特地貌区;景观生态风险均较高;人为干扰集中在西北—东南一线.(3)根据生态问题指数(Ecological Problem Index)测算结果,将生态修复关键区域分为生态保育区、功能提升区、灾害防治区和重点整治区,并结合各区突出生态问题提出相应的优化策略.展开更多
自然生态空间与碳汇空间高度重合,自然生态空间的保护和修复是固碳能力提升的必然举措.以国家级生态功能区、南岭山区喀斯特地貌广泛分布的湖南省永州市宁远县为例,运用MODIS NPP数据、景观格局指数、最小累积阻力模型,识别县域碳汇空...自然生态空间与碳汇空间高度重合,自然生态空间的保护和修复是固碳能力提升的必然举措.以国家级生态功能区、南岭山区喀斯特地貌广泛分布的湖南省永州市宁远县为例,运用MODIS NPP数据、景观格局指数、最小累积阻力模型,识别县域碳汇空间、县域自然生态空间景观结构格局特征及生态安全格局,进而提出自然生态空间保护方案.结果表明:①宁远县固碳能力较强,年固碳量达1702.77×10^(4)t,但空间分布差异大,最大固碳密度为2.07 kg C/m^(2),最小固碳密度为0.32 kg C/m^(2).②宁远县生态资源优越,森林资源丰富,受生产建设和石漠化侵蚀等因素影响,生态斑块破碎,生态廊道连通性不够.③从保护目标设置、空间布局优化、用途管制、生态保护修复4个方面提出自然生态空间保护方案,符合县域自然生态空间格局的形成和优化,为南岭山区自然生态空间保护修复提供参考.展开更多
基金Supported by Guizhou Provincial Key Technology R&D Program ([2023]General 211)Guizhou Science and Technology Innovation Base Construction Project (Qian Ke He Zhong Yin Di[2023]005).
文摘Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope.
基金the National Natural Science Foundation of China(41661088)Project for Guizhou Province"High-level Innovative Talent Training Program‘Hundred’Level Talents"(QKHPTRC[2016]5674)Guizhou Science and Technology Plan Project(QKHZC[2023]GENERAL211).
文摘[Objective]The ecological vulnerability and landscape ecological risk of karst mountainous areas have increased as a result of enhanced disturbance of natural resources by human activities.This paper aimed to explore the characteristics of ecological risk evolution under different landscape patterns in the region,with a view to providing reference for land classification protection,sustainable use of resources and regional ecological risk optimization in karst mountainous areas.[Method]Taking Huangping County,a typical karst mountainous area,as an example,eight evaluation factors of natural and landscape patterns were selected to construct a landscape ecological risk evaluation model,to quantitatively explore the spatio-temporal evolution of landscape ecological risk and the trend of risk level transfer in the study area from^(2)010-2018,and to reveal the complex relationship between ecological risk and topography in karst mountainous areas.[Result]①From 2010 to 2018,land use types changed to different degrees,with the most amount of woodland transferred out(1627.37 hm^(2))and the most amount of construction land transferred in(1303.93 hm^(2));a total of 3552.31 hm^(2) of land was transferred,with a change ratio of 2.13%,and there was a significant conversion between construction land,arable land,and woodland.②From 2010 to 2018,the landscape ecological risk in the study area changed significantly,and the landscape ecological risk index decreased from 0.3441 to 0.1733,showing an upward and then downward trend;the landscape ecological risk of the whole region was dominated by low-risk and lower-risk zones,and the ecological risk level generally shifted from a high level to a low level,and the ecological environment was improved.③There was a negative correlation between ecological risk and topographic position,and high-risk zones were mainly distributed among low topographic zones;with the change of time,the advantage of risk level for the selection of topography was gradually weakened,and the influence of anthropogenic factors on the ecological risk of the landscape was becoming more and more prominent.[Conclusion]This paper can provide theoretical basis for land use optimization and ecological protection in karst mountainous areas.
基金Under the auspices of the National Natural Science Foundation of China (No.40161004)
文摘Ecological security is the main task and applied field of present geography, resources and environment sciences and ecology. Ecological security evaluation will efficiently promote ecological security and environmental construction in regional land use. In this thesis, the authors put forward the index system of ecological security evaluation in karst mountainous area on three aspects, the pressure of resources and eco-environment, the quality of resources and eco-environment, and the ability of environmental protection and ecological improvement. Using the evaluation method with single index, based on the case study ofDu'an Yao Autonomous County of Guangxi Zhuang Autonomous Region, the system of synthetic regionalization of ecological agricultural economy was formed, which includes three regions, south region with basic security and synthetic agricultural development, east region with critical security and agriculture, forestry, animal husbandry balanced development, mid-west and south region with ecological insecurity and compounded agriculture and forestry management. Meanwhile, for these regions, the countermeasures of sustainable agricultural development were pointed out, which provide the basis and example for ecological regulation and control of sustainable agricultural development in counties ofkarst mountainous area.
基金Supported by the Guangxi Zhuang Autonomous Region (GZAR) Science and Technology Project (AB20159022 and AB17292051)GZAR Natural Science Foundation (2018GXNSFAA281338)。
文摘Meteorological conditions have an important impact on changes of vegetation in ecologically fragile karst areas.This study aims to explore a method for quantitative evaluation of these meteorological conditions. We analyzed the changing trend of vegetation during 2000–2018 and the correlations between vegetation changes and various meteorological factors in karst rocky areas of Guangxi Zhuang Autonomous Region, China. Key meteorological factors in vegetation areas with varying degrees of improvement were selected and evaluated at seasonal timescale. A quantitative evaluation model of comprehensive influences of meteorological factors on vegetation was built by using the partial least-square regression(PLS). About 91.45% of the vegetation tended to be improved, while only the rest 8.55% showed a trend of degradation from 2000 to 2018. Areas with evident vegetation improvement were mainly distributed in the middle and northeast, and those with obvious vegetation degradation were scattered. Meteorological factors affecting vegetation were significantly different among the four seasons. Overall, high air humidity, small temperature difference in spring and autumn, and low daily minimum temperature and air pressure were favorable conditions. Low temperature in winter as well as high temperature in summer and autumn were unfavorable conditions. The Climate Vegetation Index(CVI) model was established by PLS using the maximum, minimum, and average temperatures;vapor pressure;rainfall;and air pressure as key meteorological factors. The Enhanced Vegetation Index(EVI) was well fitted by the CVI model, with the average coefficient of determination(r2) and root mean square error(RMSE) of 0.856 and 0.042, respectively. Finally, an assessment model of comprehensive meteorological conditions was built based on the interannual differences in CVI. The meteorological conditions in the study area in 2014 were successfully evaluated by combining the model and selected seasonal key meteorological factors.
文摘以开远市为例,从生态系统服务和生态脆弱性视角,构建生态安全格局并识别生态修复关键区域;以生态问题指数识别生态修复关键区内存在的生态问题,划定生态修复分区并提出相应的修复策略.研究表明:(1)开远市生态安全格局由两种源地和两类廊道构成.其中生态保护源地和生态修复源地的面积分别为190.53和16.82km^(2),潜在生态廊道和修复廊道总长分别为191.15和75.71km.(2)基于生态安全格局提取开远市生态修复关键区域,包括15个生态修复源地、12条修复廊道、31个生态夹点和11个障碍区.生态修复关键区域内石漠化主要集中于开远市西部和南部,西部石漠化程度较南部更高;土壤侵蚀以微度侵蚀为主;地质灾害多发于采矿区以及喀斯特地貌区;景观生态风险均较高;人为干扰集中在西北—东南一线.(3)根据生态问题指数(Ecological Problem Index)测算结果,将生态修复关键区域分为生态保育区、功能提升区、灾害防治区和重点整治区,并结合各区突出生态问题提出相应的优化策略.
文摘自然生态空间与碳汇空间高度重合,自然生态空间的保护和修复是固碳能力提升的必然举措.以国家级生态功能区、南岭山区喀斯特地貌广泛分布的湖南省永州市宁远县为例,运用MODIS NPP数据、景观格局指数、最小累积阻力模型,识别县域碳汇空间、县域自然生态空间景观结构格局特征及生态安全格局,进而提出自然生态空间保护方案.结果表明:①宁远县固碳能力较强,年固碳量达1702.77×10^(4)t,但空间分布差异大,最大固碳密度为2.07 kg C/m^(2),最小固碳密度为0.32 kg C/m^(2).②宁远县生态资源优越,森林资源丰富,受生产建设和石漠化侵蚀等因素影响,生态斑块破碎,生态廊道连通性不够.③从保护目标设置、空间布局优化、用途管制、生态保护修复4个方面提出自然生态空间保护方案,符合县域自然生态空间格局的形成和优化,为南岭山区自然生态空间保护修复提供参考.