Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse...Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.展开更多
Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate model...Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6.展开更多
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord...Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sus...This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.展开更多
In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm ineq...In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm inequalities for combination of orthogonal projections on a Hilbert space.Furthermore,we give necessary and sufficient conditions under which the norm of the above combination of o`rthogonal projections attains its optimal value.展开更多
This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2...This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.展开更多
The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing...The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.展开更多
The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR varia...The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.展开更多
Under the work deployment of"Double Hundred Action",Huizhou Engineering Vocational College,Nanxiong Municipal People's Government and Shaoguan College have formulated a series of plans and projects to pr...Under the work deployment of"Double Hundred Action",Huizhou Engineering Vocational College,Nanxiong Municipal People's Government and Shaoguan College have formulated a series of plans and projects to promote the local development of Nanxiong through cooperation and in-depth research,which strengthens the role of vocational education in rural revitalization,and promotes the effective use of red tourism resources in Nanxiong City,promoted the development of local tourism and economy,provides new impetus and direction for rural revitalization,and demonstrates the positive prospects and vitality of rural revitalization,as well as the important value and potential of vocational education in rural revitalization.展开更多
With the population growth through natural growth and migration,coupled with the city expansion,it is the fact that Dehradun City in India faces severe water scarcity.Therefore,the Song Dam Drinking Water Project(SDDW...With the population growth through natural growth and migration,coupled with the city expansion,it is the fact that Dehradun City in India faces severe water scarcity.Therefore,the Song Dam Drinking Water Project(SDDWP)is proposed to provide ample drinking water to Dehradun City and its suburban areas.This paper examined economic significance and environmental impacts of the SDDWP in Garhwal Himalaya,India.To conduct this study,we collected data from both primary and secondary sources.There are 12 villages and 3 forest divisions in the surrounding areas of the proposed dam project,of which 3 villages will be fully submerged and 50 households will be affected.For this study,50 heads of the households were interviewed in the 3 submerged villages.The questions mainly focused on economic significance,environmental impacts,and rehabilitation issues of the dam project.The findings of this study indicate that economic significance of the dam project is substantial,including providing ample water for drinking and irrigation,contributing to groundwater recharge,creating job opportunities,and promoting the development of tourism and fisheries in the Doon Valley.In terms of the rehabilitation of the affected people,there are only 50 households in need of rehabilitation.Currently,the arable land of these affected people is not sufficient to sustain their livelihoods.The entire landscape is fragile,rugged,and precipitous;therefore,the affected people are willing to rehabilitate to more suitable areas in the Doon Valley.Moreover,it is essential to provide them with sufficient compensation packages including the compensation of arable land,houses,cash,common property resources,institutions,belongingness,and cultural adaptation.On the other hand,the proposed dam project will have adverse environmental impacts including arable land degradation,forest degradation,loss of fauna and flora,soil erosion,landslides,and soil siltation.These impacts will lead to the ecological imbalances in both upstream and downstream areas.This study suggests that the affected people should be given sufficient compensation packages in all respects.Afforestation programs can be launched in the degraded areas to compensate for the loss of forest in the affected areas.展开更多
Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role ...Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role of the connections between the LS and its downstream brain regions in social behavio rs remains unclea r.In this study,we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1(vCA1)influence sociability.Our res ults showed that gamma-aminobutyric acid(GABA)-e rgic neuro ns were activated following social experience,and that social behavio rs were enhanced by chemogenetic modulation of these neurons.Moreover,LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons,and regulating LSGABA→vCA1Gluneural projections affected social behaviors,which were impeded by suppressing LSprojecting vCA1 neuronal activity or inhibiting GABAAreceptors in vCA1.These findings support the hypothesis that LS inputs to the vCA1 can control social prefe rences and social novelty behaviors.These findings provide new insights rega rding the neural circuits that regulate sociability.展开更多
This study comprehensively examines the patterns and regional variation of severe rainfall across the African continent, employing a suite of eight extreme precipitation indices. The analysis extends to the assessment...This study comprehensively examines the patterns and regional variation of severe rainfall across the African continent, employing a suite of eight extreme precipitation indices. The analysis extends to the assessment of projected changes in precipitation extremes using five General Circulation Models (GCMs) from Coupled Model Intercomparison Project Phase 6 (CMIP6) under four Shared Socioeconomic Pathways (SSPs) scenarios at the long-term period (2081-2100) of the 21<sup>st</sup> century. Furthermore, the study investigates potential mechanisms influencing precipitation extremes by correlating extreme precipitation indices with oceanic system indices, specifically Ni?o 3.4 for El Ni?o-Southern Oscillation (ENSO) and Dipole Mode Index (DMI) for the Indian Ocean Dipole (IOD). The findings revealed distinct spatial distributions in mean trends of extreme precipitation indices, indicating a tendency toward decreased extreme precipitation in North Africa, Sahel region, Central Africa and the Western part of South Africa. Conversely, West Africa, East Africa and the Eastern part of South Africa exhibit an inclination toward increased extreme precipitation. The changes in precipitation extreme indices indicate a general rise in both the severity and occurrence of extreme precipitation events under all scenarios by the end of the 21<sup>st</sup> century. Notably, our analysis projects a decrease in consecutive wet days (CWD) in the far-future. Additionally, correlation analysis highlights significant correlation between above or below threshold rainfall fluctuation in East Africa and South Africa with oceanic systems, particularly ENSO and the IOD. Central Africa abnormal precipitation variability is also linked to ENSO with a significant negative correlation. These insights contribute valuable information for understanding and projecting the dynamics of precipitation extreme in Africa, providing a foundation for climate adaptation and mitigation efforts in the region.展开更多
It is alarming for the fact that Wildfires number, severity and consequently impact have significantly increased during the last years, an aftermath of the Climate Change. One of the most affected areas worldwide is M...It is alarming for the fact that Wildfires number, severity and consequently impact have significantly increased during the last years, an aftermath of the Climate Change. One of the most affected areas worldwide is Mediterranean, due to the unique combination of its type of vegetation and demanding climatic conditions. This research is focused on the Region of Epirus in Greece, an area with significant natural vegetation and a range of geomorphological aspects. In order to estimate the Wildfire Risk Hazard, several factors have been used: geomorphological (slope, aspect, elevation, TWI, Hydrographic network), social (Settlements and landfils, roads, overhead lines and substations), environmental (land cover) and climatic (Fire Weather Index). Through a multi-criteria decision analysis (MCDA) and an analytic hierarchy process (AHP) in a GIS environment, the Wildfire Risk Hazard has been estimated not only for current conditions but also for future projections for the near future (2031-2060) and the far future (2071-2100). The selected case study includes the potential impact of the Wildfires to the installed (or targeted to be installed) RES projects in the studied region.展开更多
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role...Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.展开更多
This study assesses the projected changes in the climate zoning of Côte d’Ivoire using the hierarchical classification of principal components (HCPC) method applied to the daily precipitation data of an ensemble...This study assesses the projected changes in the climate zoning of Côte d’Ivoire using the hierarchical classification of principal components (HCPC) method applied to the daily precipitation data of an ensemble of 14 CORDEX-AFRICA simulations under RCP4.5 and RCP8.5 scenarios. The results indicate the existence of three climate zones in Côte d’Ivoire (the coastal, the centre and the north) over the historical period (1981-2005). Moreover, CORDEX simulations project an extension of the surface area of drier climatic zones while a reduction of wetter zones, associated with the appearance of an intermediate climate zone with surface area varying from 77,560 km<sup>2</sup> to 134,960 km<sup>2</sup> depending on the period and the scenario. These results highlight the potential impacts of climate change on the delimitation of the climate zones of Côte d’Ivoire under the greenhouse gas emission scenarios. Thus, there is a reduction in the surface areas suitable for the production of cash crops such as cocoa and coffee. This could hinder the country’s economy and development, mainly based on these cash crops.展开更多
In an era dominated by artificial intelligence (AI), establishing customer confidence is crucial for the integration and acceptance of AI technologies. This interdisciplinary study examines factors influencing custome...In an era dominated by artificial intelligence (AI), establishing customer confidence is crucial for the integration and acceptance of AI technologies. This interdisciplinary study examines factors influencing customer trust in AI systems through a mixed-methods approach, blending quantitative analysis with qualitative insights to create a comprehensive conceptual framework. Quantitatively, the study analyzes responses from 1248 participants using structural equation modeling (SEM), exploring interactions between technological factors like perceived usefulness and transparency, psychological factors including perceived risk and domain expertise, and organizational factors such as leadership support and ethical accountability. The results confirm the model, showing significant impacts of these factors on consumer trust and AI adoption attitudes. Qualitatively, the study includes 35 semi-structured interviews and five case studies, providing deeper insight into the dynamics shaping trust. Key themes identified include the necessity of explainability, domain competence, corporate culture, and stakeholder engagement in fostering trust. The qualitative findings complement the quantitative data, highlighting the complex interplay between technology capabilities, human perceptions, and organizational practices in establishing trust in AI. By integrating these findings, the study proposes a novel conceptual model that elucidates how various elements collectively influence consumer trust in AI. This model not only advances theoretical understanding but also offers practical implications for businesses and policymakers. The research contributes to the discourse on trust creation and decision-making in technology, emphasizing the need for interdisciplinary efforts to address societal challenges associated with technological advancements. It lays the groundwork for future research, including longitudinal, cross-cultural, and industry-specific studies, to further explore consumer trust in AI.展开更多
Against the backdrop of rapid development in China’s construction and infrastructure sectors,discrepancies between project budgets and actual costs have become pronounced,manifesting in project overruns and suspensio...Against the backdrop of rapid development in China’s construction and infrastructure sectors,discrepancies between project budgets and actual costs have become pronounced,manifesting in project overruns and suspensions,posing significant challenges.To address inaccuracies in investment targets and operational complexities,this study focuses on a beam-bridge construction project in a district of Shijiazhuang city as a case study.Drawing upon historical analogs,the project employs a Work Breakdown Structure(WBS)to decompose the engineering works.Building on theories of Cost Significant(CS)and Whole Life Costing(WLC),the study constructs Cost Significant Items(CSIs)and develops a CNN-BiLSTM-Attention neural network for nonlinear prediction.By identifying significant cost drivers in engineering projects,this paper presents a streamlined cost estimation method that significantly reduces computational burdens,simplifies data collection processes,and optimizes data analysis and forecasting,thereby enhancing prediction accuracy.Finally,validation with real-world cost fluctuation data demonstrates minor errors,meeting predictive requirements across project execution phases.展开更多
Based on 20 models from phase 6 of the Coupled Model Intercomparison Project(CMIP6),this article explored possible reasons for differences in simulation biases and projected changes in precipitation in northern China ...Based on 20 models from phase 6 of the Coupled Model Intercomparison Project(CMIP6),this article explored possible reasons for differences in simulation biases and projected changes in precipitation in northern China among the allmodel ensemble(AMME),“highest-ranked”model ensemble(BMME),and“lowest-ranked”model ensemble(WMME),from the perspective of atmospheric circulations and moisture budgets.The results show that the BMME and AMME reproduce the East Asian winter circulations better than the WMME.Compared with the AMME and WMME,the BMME reduces the overestimation of evaporation,thereby improving the simulation of winter precipitation.The three ensemble simulated biases for the East Asian summer circulations are generally similar,characterized by a stronger zonal pressure gradient between the mid-latitudes of the North Pacific and East Asia and a northward displacement of the East Asian westerly jet.However,the simulated vertical moisture advection is improved in the BMME,contributing to the slightly higher performance of the BMME than the AMME and WMME on summer precipitation in North and Northeast China.Compared to the AMME and WMME,the BMME projects larger increases in precipitation in northern China during both seasons by the end of the 21st century under the Shared Socioeconomic Pathway 5-8.5(SSP5-8.5).One of the reasons is that the increase in evaporation projected by the BMME is larger.The projection of a greater dynamic contribution by the BMME also plays a role.In addition,larger changes in the nonlinear components in the BMME projection contribute to a larger increase in winter precipitation in northern China.展开更多
The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement co...The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement condition on road users.This paper presents a state-of-the-art review of multi-objective optimization(MOO)problems that have been formulated and solution techniques that have been used in selecting and scheduling highway pavement rehabilitation and maintenance activities.First,the paper presents a taxonomy and hierarchy for these activities,the role of funding sources,and levels of jurisdiction.The paper then describes how three different decision mechanisms have been used in past research and practice for project selection and scheduling(historical practices,expert opinion,and explicit mathematical optimization)and identifies the pros and cons of each mechanism.The paper then focuses on the optimization mechanism and presents the types of optimization problems,formulations,and objectives that have been used in the literature.Next,the paper examines various solution algorithms and discusses issues related to their implementation.Finally,the paper identifies some barriers to implementing multi-objective optimization in selecting and scheduling highway pavement rehabilitation and maintenance activities,and makes recommendations to overcome some of these barriers.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the Chinese Academy of Sciences[grant number 060GJHZ2023079GC].
文摘Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.
基金funding from the NFR COMBINED (Grant No.328935)The BCPU hosted YZ visit to University of Bergen (Trond Mohn Foundation Grant No.BFS2018TMT01)+2 种基金supported by the National Key Research and Development Program of China (Grant No.2023YFA0805101)the National Natural Science Foundation of China (Grant Nos.42376250 and 41731177)a China Scholarship Council fellowship and the UTFORSK Partnership Program (CONNECTED UTF-2016-long-term/10030)。
文摘Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6.
基金supported by Guangdong Provincial Basic and Applied Basic Research Fund,No.2021A1515011299(to KT)。
文摘Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金the Nord Forsk-funded Nordic Centre of Excellence project (Award 766654) Arctic Climate Predictions: Pathways to Resilient,Sustainable Societies (ARCPATH)National Science Foundation Award 212786 Synthesizing Historical Sea-Ice Records to Constrain and Understand Great Sea-Ice Anomalies (ICEHIST) PI Martin MILES,Co-PI Astrid OGILVIE+12 种基金American-Scandinavian Foundation Award Whales and Ice: Marine-mammal subsistence use in times of famine in Iceland ca.A.D.1600–1900 (ICEWHALE),PI Astrid OGILVIESocial Sciences and Humanities Research Council of Canada Award 435-2018-0194 Northern Knowledge for Resilience,Sustainable Environments and Adaptation in Coastal Communities (NORSEACC),PI Leslie KING,Co-PI,Astrid OGILVIEToward Just,Ethical and Sustainable Arctic Economies,Environments and Societies (JUSTNORTH).EU H2020 (https://www.svs.is/en/ projects/ongoing-projects/justnorth-2020-2023)INTO THE OCEANIC by Elizabeth OGILVIE and Robert PAGE (https://www.intotheo ceanic.org/introduction)Proxy Assimilation for Reconstructing Climate and Improving Model (PARCIM) funded by the Bjerknes Centre for Climate Research,led by Fran?ois COUNILLON,PI Noel KEENLYSIDEAccelerated Arctic and Tibetan Plateau Warming: Processes and Combined Impact on Eurasian Climate (COMBINED),Research Council of Norway (Grant No.328935),Led by Noel KEENLYSIDEArven etter Nansen programme (the Nansen Legacy Project),Research Council of Norway (Grant No.276730),PI Noel KEENLYSIDEBjerknes Climate Prediction Unit,funded by Trond Mohn Foundation (Grant BFS2018TMT01) Centre for Research-based Innovation Climate Futures,Research Council of Norway (Grant No.309562),PIs Noel KEENLYSIDE,Francois COUNILLONDeveloping and Advancing Seasonal Predictability of Arctic Sea Ice (4ICE),Research Council of Norway (Grant No.254765),PI Francois COUNILLONTropical and South Atlantic Climate-Based Marine Ecosystem Prediction for Sustainable Management (TRIATLAS) European Union Horizon 2020 (Grant No.817578),led by Noel KEENLYSIDE,PI Fran?ois COUNILLONImpetus4Change,European Union Horizon Europe (Grant No.101081555),PIs Noel KEENLYSIDE,Fran?ois COUNILLONLaboratory for Climate Predictability,Russian Megagrant funded by Ministry of Science and Higher Education of the Russian Federation (Agreement No.075-15-2021-577),led by Noel KEENLYSIDE,PI Segey GULEVRapid Arctic Environmental Changes: Implications for Well-Being,Resilience and Evolution of Arctic Communities (RACE),Belmont Forum (RCN Grant No.312017),PIs Sergey GULEV and Noel KEENLYSIDE。
文摘This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.
文摘In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm inequalities for combination of orthogonal projections on a Hilbert space.Furthermore,we give necessary and sufficient conditions under which the norm of the above combination of o`rthogonal projections attains its optimal value.
基金The National Natural Science Foundation of China under contract Nos 42275024 and 42105040the Key R&D Program of China under contract No.2022YFE0203500+3 种基金the Guangdong Basic and Applied Basic Research Foundation under contract Nos 2023B1515020009 and 2024B1515040024the Youth Innovation Promotion Association CAS under contract No.2020340the Special Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences under contract No.SCSIO2023QY01the Science and Technology Planning Project of Guangzhou under contract No.2024A04J6275.
文摘This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.
基金Supported by National Major Science and Technology Infrastructure Construction Project:the Chinese Meridian Project(2017-000052-73-01-002390)。
文摘The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.
基金supported by The Second Tibetan Plateau Scientific Expedition and Research (STEP) program(Grant No. 2019QZKK0102)the National Natural Science Foundation of China (Grant No. 41975135)+1 种基金the Natural Science Foundation of Sichuan,China (Grant No. 2022NSFSC1092)funded by the China Scholarship Council。
文摘The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.
基金Supported by Special Foundation for Science and Technology Innovation Strategy of Guangdong Province in 2024(Science and Technology Innovation Cultivation of College Students):Exploration and Practice of Living Inheritance Path of Red Tourism Resources in Nanxiong City under the Background of"Baiqianwan Project"(pdjh2024b657).
文摘Under the work deployment of"Double Hundred Action",Huizhou Engineering Vocational College,Nanxiong Municipal People's Government and Shaoguan College have formulated a series of plans and projects to promote the local development of Nanxiong through cooperation and in-depth research,which strengthens the role of vocational education in rural revitalization,and promotes the effective use of red tourism resources in Nanxiong City,promoted the development of local tourism and economy,provides new impetus and direction for rural revitalization,and demonstrates the positive prospects and vitality of rural revitalization,as well as the important value and potential of vocational education in rural revitalization.
文摘With the population growth through natural growth and migration,coupled with the city expansion,it is the fact that Dehradun City in India faces severe water scarcity.Therefore,the Song Dam Drinking Water Project(SDDWP)is proposed to provide ample drinking water to Dehradun City and its suburban areas.This paper examined economic significance and environmental impacts of the SDDWP in Garhwal Himalaya,India.To conduct this study,we collected data from both primary and secondary sources.There are 12 villages and 3 forest divisions in the surrounding areas of the proposed dam project,of which 3 villages will be fully submerged and 50 households will be affected.For this study,50 heads of the households were interviewed in the 3 submerged villages.The questions mainly focused on economic significance,environmental impacts,and rehabilitation issues of the dam project.The findings of this study indicate that economic significance of the dam project is substantial,including providing ample water for drinking and irrigation,contributing to groundwater recharge,creating job opportunities,and promoting the development of tourism and fisheries in the Doon Valley.In terms of the rehabilitation of the affected people,there are only 50 households in need of rehabilitation.Currently,the arable land of these affected people is not sufficient to sustain their livelihoods.The entire landscape is fragile,rugged,and precipitous;therefore,the affected people are willing to rehabilitate to more suitable areas in the Doon Valley.Moreover,it is essential to provide them with sufficient compensation packages including the compensation of arable land,houses,cash,common property resources,institutions,belongingness,and cultural adaptation.On the other hand,the proposed dam project will have adverse environmental impacts including arable land degradation,forest degradation,loss of fauna and flora,soil erosion,landslides,and soil siltation.These impacts will lead to the ecological imbalances in both upstream and downstream areas.This study suggests that the affected people should be given sufficient compensation packages in all respects.Afforestation programs can be launched in the degraded areas to compensate for the loss of forest in the affected areas.
基金supported by the National Natural Science Foundation of China,No.82171521(to CL)the Special Funds ofTaishan Scholars Project of Shandong Province,No.tsqn202211368(to CL)+2 种基金the Natural Science Foundation of Shandong Province,Nos.ZR2022YQ65(to CL),ZR2021MH073(to CL),ZR2019PH109(to WW)the Projects of Medical and Health Technology Development Program in Shandong Province,China,Nos.202003090720(to DZ),202003070728(to JL),2019 WS329(to DW)the Scientific Research Foundation of Binzhou Medical University,No.BY2018KJ21(to DW)。
文摘Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role of the connections between the LS and its downstream brain regions in social behavio rs remains unclea r.In this study,we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1(vCA1)influence sociability.Our res ults showed that gamma-aminobutyric acid(GABA)-e rgic neuro ns were activated following social experience,and that social behavio rs were enhanced by chemogenetic modulation of these neurons.Moreover,LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons,and regulating LSGABA→vCA1Gluneural projections affected social behaviors,which were impeded by suppressing LSprojecting vCA1 neuronal activity or inhibiting GABAAreceptors in vCA1.These findings support the hypothesis that LS inputs to the vCA1 can control social prefe rences and social novelty behaviors.These findings provide new insights rega rding the neural circuits that regulate sociability.
文摘This study comprehensively examines the patterns and regional variation of severe rainfall across the African continent, employing a suite of eight extreme precipitation indices. The analysis extends to the assessment of projected changes in precipitation extremes using five General Circulation Models (GCMs) from Coupled Model Intercomparison Project Phase 6 (CMIP6) under four Shared Socioeconomic Pathways (SSPs) scenarios at the long-term period (2081-2100) of the 21<sup>st</sup> century. Furthermore, the study investigates potential mechanisms influencing precipitation extremes by correlating extreme precipitation indices with oceanic system indices, specifically Ni?o 3.4 for El Ni?o-Southern Oscillation (ENSO) and Dipole Mode Index (DMI) for the Indian Ocean Dipole (IOD). The findings revealed distinct spatial distributions in mean trends of extreme precipitation indices, indicating a tendency toward decreased extreme precipitation in North Africa, Sahel region, Central Africa and the Western part of South Africa. Conversely, West Africa, East Africa and the Eastern part of South Africa exhibit an inclination toward increased extreme precipitation. The changes in precipitation extreme indices indicate a general rise in both the severity and occurrence of extreme precipitation events under all scenarios by the end of the 21<sup>st</sup> century. Notably, our analysis projects a decrease in consecutive wet days (CWD) in the far-future. Additionally, correlation analysis highlights significant correlation between above or below threshold rainfall fluctuation in East Africa and South Africa with oceanic systems, particularly ENSO and the IOD. Central Africa abnormal precipitation variability is also linked to ENSO with a significant negative correlation. These insights contribute valuable information for understanding and projecting the dynamics of precipitation extreme in Africa, providing a foundation for climate adaptation and mitigation efforts in the region.
文摘It is alarming for the fact that Wildfires number, severity and consequently impact have significantly increased during the last years, an aftermath of the Climate Change. One of the most affected areas worldwide is Mediterranean, due to the unique combination of its type of vegetation and demanding climatic conditions. This research is focused on the Region of Epirus in Greece, an area with significant natural vegetation and a range of geomorphological aspects. In order to estimate the Wildfire Risk Hazard, several factors have been used: geomorphological (slope, aspect, elevation, TWI, Hydrographic network), social (Settlements and landfils, roads, overhead lines and substations), environmental (land cover) and climatic (Fire Weather Index). Through a multi-criteria decision analysis (MCDA) and an analytic hierarchy process (AHP) in a GIS environment, the Wildfire Risk Hazard has been estimated not only for current conditions but also for future projections for the near future (2031-2060) and the far future (2071-2100). The selected case study includes the potential impact of the Wildfires to the installed (or targeted to be installed) RES projects in the studied region.
基金Under the auspices of the Yunnan Scientist Workstation on International River Research of Daming He(No.KXJGZS-2019-005)National Natural Science Foundation of China(No.42201040)+1 种基金National Key Research and Development Project of China(No.2016YFA0601601)China Postdoctoral Science Foundation(No.2023M733006)。
文摘Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.
文摘This study assesses the projected changes in the climate zoning of Côte d’Ivoire using the hierarchical classification of principal components (HCPC) method applied to the daily precipitation data of an ensemble of 14 CORDEX-AFRICA simulations under RCP4.5 and RCP8.5 scenarios. The results indicate the existence of three climate zones in Côte d’Ivoire (the coastal, the centre and the north) over the historical period (1981-2005). Moreover, CORDEX simulations project an extension of the surface area of drier climatic zones while a reduction of wetter zones, associated with the appearance of an intermediate climate zone with surface area varying from 77,560 km<sup>2</sup> to 134,960 km<sup>2</sup> depending on the period and the scenario. These results highlight the potential impacts of climate change on the delimitation of the climate zones of Côte d’Ivoire under the greenhouse gas emission scenarios. Thus, there is a reduction in the surface areas suitable for the production of cash crops such as cocoa and coffee. This could hinder the country’s economy and development, mainly based on these cash crops.
文摘In an era dominated by artificial intelligence (AI), establishing customer confidence is crucial for the integration and acceptance of AI technologies. This interdisciplinary study examines factors influencing customer trust in AI systems through a mixed-methods approach, blending quantitative analysis with qualitative insights to create a comprehensive conceptual framework. Quantitatively, the study analyzes responses from 1248 participants using structural equation modeling (SEM), exploring interactions between technological factors like perceived usefulness and transparency, psychological factors including perceived risk and domain expertise, and organizational factors such as leadership support and ethical accountability. The results confirm the model, showing significant impacts of these factors on consumer trust and AI adoption attitudes. Qualitatively, the study includes 35 semi-structured interviews and five case studies, providing deeper insight into the dynamics shaping trust. Key themes identified include the necessity of explainability, domain competence, corporate culture, and stakeholder engagement in fostering trust. The qualitative findings complement the quantitative data, highlighting the complex interplay between technology capabilities, human perceptions, and organizational practices in establishing trust in AI. By integrating these findings, the study proposes a novel conceptual model that elucidates how various elements collectively influence consumer trust in AI. This model not only advances theoretical understanding but also offers practical implications for businesses and policymakers. The research contributes to the discourse on trust creation and decision-making in technology, emphasizing the need for interdisciplinary efforts to address societal challenges associated with technological advancements. It lays the groundwork for future research, including longitudinal, cross-cultural, and industry-specific studies, to further explore consumer trust in AI.
文摘Against the backdrop of rapid development in China’s construction and infrastructure sectors,discrepancies between project budgets and actual costs have become pronounced,manifesting in project overruns and suspensions,posing significant challenges.To address inaccuracies in investment targets and operational complexities,this study focuses on a beam-bridge construction project in a district of Shijiazhuang city as a case study.Drawing upon historical analogs,the project employs a Work Breakdown Structure(WBS)to decompose the engineering works.Building on theories of Cost Significant(CS)and Whole Life Costing(WLC),the study constructs Cost Significant Items(CSIs)and develops a CNN-BiLSTM-Attention neural network for nonlinear prediction.By identifying significant cost drivers in engineering projects,this paper presents a streamlined cost estimation method that significantly reduces computational burdens,simplifies data collection processes,and optimizes data analysis and forecasting,thereby enhancing prediction accuracy.Finally,validation with real-world cost fluctuation data demonstrates minor errors,meeting predictive requirements across project execution phases.
基金jointly supported by the National Natural Science Foundation of China(Grant No.41991285)the National Key Research and Development Program of China(2017YFA0605004)the Program for Distinguished Professors of Jiangsu。
文摘Based on 20 models from phase 6 of the Coupled Model Intercomparison Project(CMIP6),this article explored possible reasons for differences in simulation biases and projected changes in precipitation in northern China among the allmodel ensemble(AMME),“highest-ranked”model ensemble(BMME),and“lowest-ranked”model ensemble(WMME),from the perspective of atmospheric circulations and moisture budgets.The results show that the BMME and AMME reproduce the East Asian winter circulations better than the WMME.Compared with the AMME and WMME,the BMME reduces the overestimation of evaporation,thereby improving the simulation of winter precipitation.The three ensemble simulated biases for the East Asian summer circulations are generally similar,characterized by a stronger zonal pressure gradient between the mid-latitudes of the North Pacific and East Asia and a northward displacement of the East Asian westerly jet.However,the simulated vertical moisture advection is improved in the BMME,contributing to the slightly higher performance of the BMME than the AMME and WMME on summer precipitation in North and Northeast China.Compared to the AMME and WMME,the BMME projects larger increases in precipitation in northern China during both seasons by the end of the 21st century under the Shared Socioeconomic Pathway 5-8.5(SSP5-8.5).One of the reasons is that the increase in evaporation projected by the BMME is larger.The projection of a greater dynamic contribution by the BMME also plays a role.In addition,larger changes in the nonlinear components in the BMME projection contribute to a larger increase in winter precipitation in northern China.
基金This work is supported by the Next Generation Transportation Systems Center(NEXTRANS),USDOT's Region 5 University Transportation CenterThe work is also affiliated with Purdue University College of Engineering's Institute for Control,Optimization,and Networks(ICON)and Center for Intelligent Infrastructure(CII)initiatives.
文摘The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement condition on road users.This paper presents a state-of-the-art review of multi-objective optimization(MOO)problems that have been formulated and solution techniques that have been used in selecting and scheduling highway pavement rehabilitation and maintenance activities.First,the paper presents a taxonomy and hierarchy for these activities,the role of funding sources,and levels of jurisdiction.The paper then describes how three different decision mechanisms have been used in past research and practice for project selection and scheduling(historical practices,expert opinion,and explicit mathematical optimization)and identifies the pros and cons of each mechanism.The paper then focuses on the optimization mechanism and presents the types of optimization problems,formulations,and objectives that have been used in the literature.Next,the paper examines various solution algorithms and discusses issues related to their implementation.Finally,the paper identifies some barriers to implementing multi-objective optimization in selecting and scheduling highway pavement rehabilitation and maintenance activities,and makes recommendations to overcome some of these barriers.