The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical ...The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge in the development of CH3NH3PbI3 solar cells. It was commonly assumed that moisture or oxygen in the environment causes the poor stability of hybrid halide perovskites, however, here we show from the first-principles calculations that the room-temperature tetragonal phase of CH3NH3PbI3 is thermodynamically unstable with respect to the phase separation into CH3NH3I + PbI2, i.e., the disproportionation is exothermic, independent of the humidity or oxygen in the atmosphere. When the structure is distorted to the low-temperature orthorhombie phase, the energetic cost of separation increases, but remains small. Contributions from vibrational and configurational entropy at room temperature have been considered, but the instability of CH3NH3PbI3 is unchanged. When I is replaced by Br or CI, Pb by Sn, or the organic cation CH3NH3 by inorganic Cs, the perovskites become more stable and do not phase-separate spontaneously. Our study highlights that the poor chemical stability is intrinsic to CH3NH3PbI3 and suggests that element-substitution may solve the chemical stability problem in hybrid halide perovskite solar cells.展开更多
We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a pa...We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.展开更多
Solving nonlinear partial differential equations have attracted intensive attention in the past few decades. In this paper, the Darboux transformation method is used to derive several positon and hybrid solutions for ...Solving nonlinear partial differential equations have attracted intensive attention in the past few decades. In this paper, the Darboux transformation method is used to derive several positon and hybrid solutions for the(2+1)-dimensional complex modified Korteweg–de Vries equations. Based on the zero seed solution, the positon solution and the hybrid solutions of positon and soliton are constructed. The composition of positons is studied, showing that multi-positons of(2+1)-dimensional equations are decomposed into multi-solitons as well as the(1+1)-dimensions. Moreover, the interactions between positon and soliton are analyzed. In addition, the hybrid solutions of b-positon and breather are obtained using the plane wave seed solution, and their evolutions with time are discussed.展开更多
Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.T...Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.展开更多
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a...Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.展开更多
The paths and sources of moisture supplied to South China during two periods of the presummer rainy season (April-June) of 1979-2014, i.e., before and after the onset of the summer monsoon over the South China Sea ...The paths and sources of moisture supplied to South China during two periods of the presummer rainy season (April-June) of 1979-2014, i.e., before and after the onset of the summer monsoon over the South China Sea (SCS), are investigated by using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. During the premonsoon-onset period, the moisture transport trajectories are clustered into 6 groups, with four ocean-originating paths providing 83.9% and two continent-originating paths (originating over Lake Baikal and the Persian Gulf) con- tributing the remaining 16.1% of the total moisture. The two Pacific-originating paths, from the western Pacific Ocean and the East China Sea, combined account for about 46%, the SCS-originating path contributes about 24.3%, while the Bay of Bengal-originating path accounts for 13.6% of the total moisture over South China. The trajectories during the postmonsoon-onset period are clustered into 4 groups, with three southwesterly paths (from the Arabian Sea, the central Indian Ocean, and the western Indian Ocean, respectively) accounting for more than 76% and the sole Pacific-originating path accounting for 23.8% of the total moisture. The formation of the moisture transport tra-jectories is substantially affected by the topography, especially the Tibetan Plateau and the Indian and Indo-China Peninsulas. The SCS region contributes the most moisture during both periods (35.3% and 31.1%). The Pacific Ocean is ranked second during the former period (about 21.0%) but its contribution is reduced to 5.0% during the lat-ter period, while the contribution from the Bay of Bengal and the Indian Ocean combined increases from 17.1% to 43.2%.展开更多
The(un)forced(un)damped parametric pendulum oscillator(PPO)is analyzed analytically and numerically using some simple,effective,and more accurate techniques.In the first technique,the ansatz method is employed for ana...The(un)forced(un)damped parametric pendulum oscillator(PPO)is analyzed analytically and numerically using some simple,effective,and more accurate techniques.In the first technique,the ansatz method is employed for analyzing the unforced damped PPO and for deriving some optimal and accurate analytical approximations in the form of angular Mathieu functions.In the second approach,some approximations to(un)forced damped PPO are obtained in the form of trigonometric functions using the ansatz method.In the third approach,He’s frequency-amplitude principle is applied for deriving some approximations to the(un)damped PPO.In the forth approach,He’s homotopy technique is employed for analyzing the forced(un)damped PPO numerically.In the fifth approach,the p-solution Method,which is constructed based on Krylov–Bogoliúbov Mitropolsky method,is introduced for deriving an approximation to the forced damped PPO.In the final approach,the hybrid Padé-finite difference method is carried out for analyzing the damped PPO numerically.All proposed techniques are compared to the fourth-order Runge–Kutta(RK4)numerical solution.Moreover,the global maximum residual distance error is estimated for checking the accuracy of the obtained approximations.The proposed methodologies and approximations can help many researchers in studying and investigating several nonlinear phenomena related to the oscillations that can arise in various branches of science,e.g.waves and oscillations in plasma physics.展开更多
基金supported by the Special Funds for Major State Basic ResearchNational Natural Science Foundation of China(NSFC)+6 种基金Project of Shanghai Municipality(16520721600)supported by NSFC under Grant No 91233121Shanghai Rising-Star Program(14QA1401500)CC of ECNUsupported by the Royal Society,the ERC and EPSRC under Grant Nos EP/M009580/1 and EP/K016288/1supported by the National Key Research and Development Program of China under Grant No 2016YFB0700700the National Natural Science Foundation of China under Grant Nos 51672023,11634003 and U1530401
文摘The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge in the development of CH3NH3PbI3 solar cells. It was commonly assumed that moisture or oxygen in the environment causes the poor stability of hybrid halide perovskites, however, here we show from the first-principles calculations that the room-temperature tetragonal phase of CH3NH3PbI3 is thermodynamically unstable with respect to the phase separation into CH3NH3I + PbI2, i.e., the disproportionation is exothermic, independent of the humidity or oxygen in the atmosphere. When the structure is distorted to the low-temperature orthorhombie phase, the energetic cost of separation increases, but remains small. Contributions from vibrational and configurational entropy at room temperature have been considered, but the instability of CH3NH3PbI3 is unchanged. When I is replaced by Br or CI, Pb by Sn, or the organic cation CH3NH3 by inorganic Cs, the perovskites become more stable and do not phase-separate spontaneously. Our study highlights that the poor chemical stability is intrinsic to CH3NH3PbI3 and suggests that element-substitution may solve the chemical stability problem in hybrid halide perovskite solar cells.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11464034
文摘We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.
基金Project sponsored by NUPTSF(Grant Nos.NY220161and NY222169)the Foundation of Jiangsu Provincial Double-Innovation Doctor Program(Grant No.JSSCBS20210541)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant No.22KJB110004)the National Natural Science Foundation of China(Grant No.11871446)。
文摘Solving nonlinear partial differential equations have attracted intensive attention in the past few decades. In this paper, the Darboux transformation method is used to derive several positon and hybrid solutions for the(2+1)-dimensional complex modified Korteweg–de Vries equations. Based on the zero seed solution, the positon solution and the hybrid solutions of positon and soliton are constructed. The composition of positons is studied, showing that multi-positons of(2+1)-dimensional equations are decomposed into multi-solitons as well as the(1+1)-dimensions. Moreover, the interactions between positon and soliton are analyzed. In addition, the hybrid solutions of b-positon and breather are obtained using the plane wave seed solution, and their evolutions with time are discussed.
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0603106)the Youth Program of National Natural Science Foundation of China(Grant No.41802148)the State Key Laboratory of Petroleum Resources and Prospecting(Grant No.2462017YJRC025,Grant No.PRP/indep04-1611)
文摘Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.
基金funded by the National Natural Foundation of China under Grant No.61172167the Science Fund Project of Heilongjiang Province(LH2020F035).
文摘Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.
基金Supported by the National Natural Science Foundation of China(91437104 and 41775050)Basic Research and Operational Practice Funds of the Chinese Academy of Meteorological Sciences(2017Z006)
文摘The paths and sources of moisture supplied to South China during two periods of the presummer rainy season (April-June) of 1979-2014, i.e., before and after the onset of the summer monsoon over the South China Sea (SCS), are investigated by using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. During the premonsoon-onset period, the moisture transport trajectories are clustered into 6 groups, with four ocean-originating paths providing 83.9% and two continent-originating paths (originating over Lake Baikal and the Persian Gulf) con- tributing the remaining 16.1% of the total moisture. The two Pacific-originating paths, from the western Pacific Ocean and the East China Sea, combined account for about 46%, the SCS-originating path contributes about 24.3%, while the Bay of Bengal-originating path accounts for 13.6% of the total moisture over South China. The trajectories during the postmonsoon-onset period are clustered into 4 groups, with three southwesterly paths (from the Arabian Sea, the central Indian Ocean, and the western Indian Ocean, respectively) accounting for more than 76% and the sole Pacific-originating path accounting for 23.8% of the total moisture. The formation of the moisture transport tra-jectories is substantially affected by the topography, especially the Tibetan Plateau and the Indian and Indo-China Peninsulas. The SCS region contributes the most moisture during both periods (35.3% and 31.1%). The Pacific Ocean is ranked second during the former period (about 21.0%) but its contribution is reduced to 5.0% during the lat-ter period, while the contribution from the Bay of Bengal and the Indian Ocean combined increases from 17.1% to 43.2%.
基金The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R17)Taif University Researchers supporting project number (TURSP2020/275), Taif University, Taif, Saudi Arabia。
文摘The(un)forced(un)damped parametric pendulum oscillator(PPO)is analyzed analytically and numerically using some simple,effective,and more accurate techniques.In the first technique,the ansatz method is employed for analyzing the unforced damped PPO and for deriving some optimal and accurate analytical approximations in the form of angular Mathieu functions.In the second approach,some approximations to(un)forced damped PPO are obtained in the form of trigonometric functions using the ansatz method.In the third approach,He’s frequency-amplitude principle is applied for deriving some approximations to the(un)damped PPO.In the forth approach,He’s homotopy technique is employed for analyzing the forced(un)damped PPO numerically.In the fifth approach,the p-solution Method,which is constructed based on Krylov–Bogoliúbov Mitropolsky method,is introduced for deriving an approximation to the forced damped PPO.In the final approach,the hybrid Padé-finite difference method is carried out for analyzing the damped PPO numerically.All proposed techniques are compared to the fourth-order Runge–Kutta(RK4)numerical solution.Moreover,the global maximum residual distance error is estimated for checking the accuracy of the obtained approximations.The proposed methodologies and approximations can help many researchers in studying and investigating several nonlinear phenomena related to the oscillations that can arise in various branches of science,e.g.waves and oscillations in plasma physics.