Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fra...Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.展开更多
[ Objective] The paper was to isolate the pathogen of leaf spot in Radix pseudoxtellariae, and to select the best fungicide with good antibacterial effectagainst the disease. [ Method] The pathogen was isolated from t...[ Objective] The paper was to isolate the pathogen of leaf spot in Radix pseudoxtellariae, and to select the best fungicide with good antibacterial effectagainst the disease. [ Method] The pathogen was isolated from the diseased leaves, and the antibacterial activities of four fungicides including carbendazim, chlorothalonil, thiophanate-methyl and mancozeb against the pathogen were measured through mycelial growth method. [ Result ] The microscopic examination resultsshowed that the main pathogens of leaf spot in R. pseudoxtellariae were Phyllosticta commonsii and Alternaria sp.. Antibacterial results showed that four fungicidesall had apparent inhibition effect against leaf spot in R. pseztdoxtellariae, of which carbendazim had the best effect with the inhibition rate of 76.6% ; followed bythiophanate-methyl with the inhibition rate of 72.3% ; the third was mancozeb with the inhibition rate of 68.7%, and the inhibition rate of chlorothalonil was the展开更多
The accumulation and productivity of shale gas are mainly controlled by the characteristics of shale reservoirs;study of these characteristics forms the basis for the shale gas exploitation of the Lower Cambrian Niuti...The accumulation and productivity of shale gas are mainly controlled by the characteristics of shale reservoirs;study of these characteristics forms the basis for the shale gas exploitation of the Lower Cambrian Niutitang Formation(Fm),Southern China.In this study,core observation and lithology study were conducted along with X-ray diffraction(XRD)and electronic scanning microscopy(SEM)examinations and liquid nitrogen(N2)adsorption/desorption and CH4 isothermal adsorption experiments for several exploration wells in northwestern Hunan Province,China.The results show that one or two intervals with high-quality source rocks(TOC>2 wt%)were deposited in the deep-shelf facies.The source rocks,which were mainly composed of carbonaceous shales and siliceous shales,had high quartz contents(>40 wt%)and low clay mineral(<30 wt%,mainly illites)and carbonate mineral(<20 wt%)contents.The SEM observations and liquid nitrogen(N2)adsorption/desorption experiments showed that the shale is tight,and nanoscale pores and microscale fractures are well developed.BJH volume(VBJH)of shale ranged from 2.144×10^-3 to 20.07×10^-3 cm^3/g,with an average of 11.752×10^-3 cm3/g.Pores mainly consisted of opened and interconnected mesopores(2–50 nm in diameter)or macropores(>50 nm in diameter).The shale reservoir has strong adsorption capacity for CH4.The Langmuir volume(VL)varied from 1.63 to 7.39 cm^3/g,with an average of 3.95 cm^3/g.The characteristics of shale reservoir are controlled by several factors:(1)A deep muddy continental shelf is the most favorable environment for the development of shale reservoirs,which is controlled by the development of basic materials.(2)The storage capacity of the shale reservoir is positively related to the TOC contents and plastic minerals and negatively related to cement minerals.(3)High maturity or overmaturity leads to the growth of organic pores and microfractures,thereby improving the reservoir storage capacity.It can be deduced that the high percentage of residual gas in Niutitang Fm results from the strong reservoir storage capacity of adsorbed gas.Two layers of sweet spots with strong storage capacity of free gas,and they are characterized by the relatively high TOC contents ranging from 4 wt%to 8 wt%.展开更多
The modeling control method based on the dynamic resistance characteristics of good nuggets, that is the DRC method, is an improvement on the dynamic resistance threshold method for the quality control of resistance s...The modeling control method based on the dynamic resistance characteristics of good nuggets, that is the DRC method, is an improvement on the dynamic resistance threshold method for the quality control of resistance spot welding. But there is still a control blind area in the initial four cycles. For this reason, the quality of every weld nugget could not be fully ensured. Thus a new fuzzy cooperative control method is put forward. It uses a multi-information time-control mechanism by combining the constant current control technology with the DRC method in a relay way. This whole-process control strategy has led to a good control effect and produced the dual-identical results in the weld nugget quality and the welding time.展开更多
Resistance Spot Welding (RSW) is a process commonly used for joining a stack of two or three metal sheets at desired spots. The weld is accomplished by holding the metallic workpieces together by applying pressure thr...Resistance Spot Welding (RSW) is a process commonly used for joining a stack of two or three metal sheets at desired spots. The weld is accomplished by holding the metallic workpieces together by applying pressure through the tips of a pair of electrodes and then passing a strong electric current for a short duration. Inconsistent weld and insufficient nugget size are some of the common problems associated with RSW. To overcome these problems, a new adaptive control scheme is proposed in this paper. It is based on an electrothermal dynamical model of the RSW process, and utilizes the principle of adaptive one-step-ahead control. It is basically a tracking controller that adjusts the weld current continuously to make sure that the temperature of the workpieces or the weld nugget tracks a desired reference temperature profile. The proposed control scheme is expected to reduce energy consumption by 5% or more per weld, which can result in significant energy savings for any application requiring a high volume of spot welds. The design steps are discussed in details. Also, results of some simulation studies are presented.展开更多
A survey on the symptom and severity of the leaf spot disease of Pongamia pinnata L. was conducted in the nurseries of the Institute of Forestry and Environmental Sciences, University of Chittagong (IFESCU), Banglad...A survey on the symptom and severity of the leaf spot disease of Pongamia pinnata L. was conducted in the nurseries of the Institute of Forestry and Environmental Sciences, University of Chittagong (IFESCU), Bangladesh Forest Research Institute (BFRI) and Aronnak Nursery in Chittagong. The highest infection percentage and disease index were found in IFESCU nursery, followed by BFRI and the lowest was recorded in Aronnak nursery. The associated organism of leaf spot disease of P. pinnata was isolated from the diseased plant parts and the pathogenicity was established with the isolated fungus. Colletorichum gloeosprioides Penz was proved to be pathogenic. The inhibition of mycelial growth of C. gloeosporioides was observed and identified as suitable fungicides (Bavistin, Cupravite and Dithane M-45) and doses (0.05, 0.10, 0.50, 1.00, 1.50 and 2.00). The lowest and highest mycelial growth were respectively found on Bavistin and on Cupravite at the concentration of 0.05 after 8th day of incubation. It indicates that out of the three tested fungicides, Bavistin showed most effective, followed by Diathane M-45, and Cupravite was ineffective for its very little inhibition on mycelial growth.展开更多
An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistiv...An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistivity of the material, the thickness of workpiece and the spot spacing, and the shunt rate is outputted. A simplified calculation for the shunt rate was presented based on the feature of the constant-current resistance spot welding and the variation of the resistance in resistance spot welding process, and then the data generated by simplified calculation were used to train and adjust the neural network model. The neural network model proposed was used to predict the shunt rate in the spot welding of 20# mlid steel (in Chinese classification) (in 2. 0 mm thickness) and 10# mild steel (in 1.5 mm and 1.0 mm thickness). The maximum relative prediction errors are, respectively, 2. 83%, 1.77% and 3.67%. Shunt current compensation experiments were peoCormed based on the neural network prediction model proposed to check the diameter difference of nuggets. Experimental results show that maximum nugget diameter deviation is less than 4% for both 10# and 20# mlid steels with spot spacing of 30 mm and 50 mm.展开更多
A workflow that helps identify potential production sweet spots in the Middle Bakken tight oil play is proposed based on analysis of large amounts of production data. The proposed approach is a multivariate statistica...A workflow that helps identify potential production sweet spots in the Middle Bakken tight oil play is proposed based on analysis of large amounts of production data. The proposed approach is a multivariate statistical model that extracts relevant information from a training dataset of production wells to facilitate geological similarity comparison between economic and sub-economic production wells. The model is applied to the Middle Bakken tight oil play in southeastern Saskatchewan. Data screening for diagnostic geological indicators for sweet spots reveals that several geological factors indicative for conventional oil reservoirs seem to work for the Middle Bakken tight oil play as well. These factors include: a) the NE Torqunay-Rocanville Trend serving as a preferred regional migration path for connecting mature source rock in southern Williston Basin and the Middle Bakken tight reservoir in southeastern Saskatchewan; b) the oils in the Bakken tight reservoirs along the U.S. and Canada border are more likely from local matured Bakken source rocks; c) subtle structural components enhancing the convergence of dispersed hydrocarbons over a large area; d) top seal and lateral barrier improving preservation, thus favouring oil productivity; e) orientation of maximum horizontal stress coincident with the direction of the variogram spatial continuity in ultimate recoverable reserves, so the direction of horizontal well has a significant impact on the oil productivity.展开更多
Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.Howeve...Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.However,conventional solid-propellant have difficulties in starting and interrupting combustion because combustion is autonomously sustained after ignition Herein,we proposed a new type of solid-propellant named laser-controlled solid propellant,which is sensitive to laser irradiation and can be started or interrupted by switching on/off the continuous wave laser.To demonstrate the feasibility and investigate the controllable combustion behaviors under different laser on/off conditions,the combus tion parameters including burning rate,ignition delay time and platform pressure were tested using pressure sensor,high-speed camera and thermographic camera.The results showed that the increase of laser-on or laser-off duration both will lead to the decrease of propellant combustion performance during re-ignition and re-combustion process.This is mainly attributed to the laser attenuation caused by the accumulation of combustion residue and the change of chamber ambient temperature.Simultaneously the multiple ignition tests revealed that the increased chamber ambient temperature after combustion can make up for the energy loss of laser attenuation and expansion of chamber cavity.However,the laser-controlled combustion performance of solid propellant displayed a decrease trend with the addi-tion of ignition times.Nevertheless,the results still exchibited good laser-controlled agility of laser-controlled solid propellant and manifested its inspiring potential in many aspects of space missions.展开更多
Southern corn leaf blight(SCLB)disease caused by Cochliobolus heterostrophus is one of the major threats to corn production worldwide.The synergistic application of low toxic chemical fungicide and biocontrol agents c...Southern corn leaf blight(SCLB)disease caused by Cochliobolus heterostrophus is one of the major threats to corn production worldwide.The synergistic application of low toxic chemical fungicide and biocontrol agents could improve biocontrol stability and efficiency against plant diseases,which ultimately reduce use of chemical fungicide.Trichoderma spp.,well-known biocontrol fungi have been used to control some foliar diseases.However,few works have been reported on synergistic application of chemical fungicide and Trichoderma against foliar diseases.This study was aimed to investigate the control effect on the synergistic application of Trichoderma harzianum SH2303 and difenoconazole-propiconazole(DP)against SCLB.Results showed that the synergistic application of DP and SH2303 reduced the leaf spot area compared to the control.The efficacy of synergistic application of DP+SH2303 against SCLB could last for 15–20 d in pot trial under the greenhouse condition.Under the natural field condition,maize treated with DP+DP and DP+SH2303 showed 60%control,which was higher than that of SH2303+DP(45%)and SH2303+SH2303(35%).All these treatments induced the synthesis of defense-related enzymes(phenylalanine ammonia lyase(PAL),catalase(CAT),and superoxide dismutase(SOD))and the defence-related gene expression of SA pathway(PR1).Taken together the in-vitro leaf test and field trial,the control of SCLB by synergistic application of DP+SH2303 was similar to that of DP+DP.Among synergistic application,the sequential application of DP+SH2303 showed better control than the sequential application of SH2303+DP.It was concluded that the synergistic application of chemical fungicide(DP)and biocontrol agent(T.harzianum SH2303)could be used to reduce the chemical fungicide and to reduce the SCLB diseases in maize,which provided alternative approach to realize an eco-friendly controlling of the foliar disease.展开更多
An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious ...An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious variation based on the statistic standard deviation of residual gas temperatures within the specified simulation cycles and the function of cyclic variation is also inducted for the cyclic variation control. Because the degree of engine cyclic variation can be estimated qualitatively, the effective control means can be applied to appease the undesired cyclic variation. Simulation result shows that for a very serious cyclic variation through the proper adjustment of the spark angle and the cyclic variation will disappear.展开更多
Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxide...Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxides (NOx) and particulate matter (PM) emissions. When natural gas (NG) is applied to a DF-PCCI engine, its low reactivity reduces the maximum pressure rise rate under high loads. However, the NG–diesel DF-PCCI engine suffers from low combustion efficiency under low loads. In this study, an injection strategy of fuel supply (NG and diesel) in a DF-PCCI engine was investigated in order to reduce both the fuel consumption and hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. A variation in the NG substitution and diesel start of energizing (SOE) was found to effectively control the formation of the fuel–air mixture. A double injection strategy of diesel was implemented to adjust the local reactivity of the mixture. Retardation of the diesel pilot SOE and a low fraction of the diesel pilot injection quantity were favorable for reducing the combustion loss. The introduction of exhaust gas recirculation (EGR) improved the fuel economy and reduced the NOx and PM emissions below Euro VI regulations by retarding the combustion phasing. The combination of an NG substitution of 40%, the double injection strategy of diesel, and a moderate EGR rate effectively improved the combustion efficiency and indicated efficiency, and reduced the HC and CO emissions under low load conditions.展开更多
This study aimed to investigate the effects of Radix Curcumae fungicides on tobacco brown spot and yield of flue-cured tobacco leaves. Through field experi- ments, control efficiency of Radix Curcumae fungicides again...This study aimed to investigate the effects of Radix Curcumae fungicides on tobacco brown spot and yield of flue-cured tobacco leaves. Through field experi- ments, control efficiency of Radix Curcumae fungicides against tobacco brown spot was investigated. The results showed that the average control efficiency of 400-fold, 600-fold and 800-fold Radix Curcumae fungicides against tobacco brown spot reached 37.83%, 34.09% and 24.32%, respectively. This study could provide the ba- sis for screening and application of plant-derived fungicides against tobacco brown spot.展开更多
The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, ...The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.展开更多
The damage characteristics and occurrence regularity of radish alternaria leaf spot, black rot, soft rot, virus disease and hollowness are introduced in the paper, and the corresponding control method is proposed from...The damage characteristics and occurrence regularity of radish alternaria leaf spot, black rot, soft rot, virus disease and hollowness are introduced in the paper, and the corresponding control method is proposed from two aspects of agricultural control and chemical control.展开更多
Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. In this paper the assignment and theoretical investigations of the pro...Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. In this paper the assignment and theoretical investigations of the problems of crown forest fire spread in windy condition were carried out. In this context, a study—mathematical modeling—of the conditions of forest fire spreading that would make it possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and determine as well as the limiting condition of fire propagation in forest with fire break.展开更多
In addition to conventional techniques,the prevention and control of Chinese rose black spot(Actinonema rosae)should be strengthened in the management of Chinese rose.The occurrence of Chinese rose black spot is close...In addition to conventional techniques,the prevention and control of Chinese rose black spot(Actinonema rosae)should be strengthened in the management of Chinese rose.The occurrence of Chinese rose black spot is closely related to plant residues,rainfall,cultivation conditions and varieties.On the basis of understanding the symptoms and occurrence regularity of Chinese rose black spot,combination measures of agricultural and chemical prevention and control should be taken.展开更多
基金financially supported by the CNPC Prospective Basic Science and Technology Special Project(2023ZZ08)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103)。
文摘Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.
基金Supported by Natural Science Project in Educational Commission of GuizhouProvince(QJK2007105)~~
文摘[ Objective] The paper was to isolate the pathogen of leaf spot in Radix pseudoxtellariae, and to select the best fungicide with good antibacterial effectagainst the disease. [ Method] The pathogen was isolated from the diseased leaves, and the antibacterial activities of four fungicides including carbendazim, chlorothalonil, thiophanate-methyl and mancozeb against the pathogen were measured through mycelial growth method. [ Result ] The microscopic examination resultsshowed that the main pathogens of leaf spot in R. pseudoxtellariae were Phyllosticta commonsii and Alternaria sp.. Antibacterial results showed that four fungicidesall had apparent inhibition effect against leaf spot in R. pseztdoxtellariae, of which carbendazim had the best effect with the inhibition rate of 76.6% ; followed bythiophanate-methyl with the inhibition rate of 72.3% ; the third was mancozeb with the inhibition rate of 68.7%, and the inhibition rate of chlorothalonil was the
基金granted by the National Natural Science Foundation of China (41603046)the Natural Science Foundation of Hunan Province (2017JJ1034)
文摘The accumulation and productivity of shale gas are mainly controlled by the characteristics of shale reservoirs;study of these characteristics forms the basis for the shale gas exploitation of the Lower Cambrian Niutitang Formation(Fm),Southern China.In this study,core observation and lithology study were conducted along with X-ray diffraction(XRD)and electronic scanning microscopy(SEM)examinations and liquid nitrogen(N2)adsorption/desorption and CH4 isothermal adsorption experiments for several exploration wells in northwestern Hunan Province,China.The results show that one or two intervals with high-quality source rocks(TOC>2 wt%)were deposited in the deep-shelf facies.The source rocks,which were mainly composed of carbonaceous shales and siliceous shales,had high quartz contents(>40 wt%)and low clay mineral(<30 wt%,mainly illites)and carbonate mineral(<20 wt%)contents.The SEM observations and liquid nitrogen(N2)adsorption/desorption experiments showed that the shale is tight,and nanoscale pores and microscale fractures are well developed.BJH volume(VBJH)of shale ranged from 2.144×10^-3 to 20.07×10^-3 cm^3/g,with an average of 11.752×10^-3 cm3/g.Pores mainly consisted of opened and interconnected mesopores(2–50 nm in diameter)or macropores(>50 nm in diameter).The shale reservoir has strong adsorption capacity for CH4.The Langmuir volume(VL)varied from 1.63 to 7.39 cm^3/g,with an average of 3.95 cm^3/g.The characteristics of shale reservoir are controlled by several factors:(1)A deep muddy continental shelf is the most favorable environment for the development of shale reservoirs,which is controlled by the development of basic materials.(2)The storage capacity of the shale reservoir is positively related to the TOC contents and plastic minerals and negatively related to cement minerals.(3)High maturity or overmaturity leads to the growth of organic pores and microfractures,thereby improving the reservoir storage capacity.It can be deduced that the high percentage of residual gas in Niutitang Fm results from the strong reservoir storage capacity of adsorbed gas.Two layers of sweet spots with strong storage capacity of free gas,and they are characterized by the relatively high TOC contents ranging from 4 wt%to 8 wt%.
文摘The modeling control method based on the dynamic resistance characteristics of good nuggets, that is the DRC method, is an improvement on the dynamic resistance threshold method for the quality control of resistance spot welding. But there is still a control blind area in the initial four cycles. For this reason, the quality of every weld nugget could not be fully ensured. Thus a new fuzzy cooperative control method is put forward. It uses a multi-information time-control mechanism by combining the constant current control technology with the DRC method in a relay way. This whole-process control strategy has led to a good control effect and produced the dual-identical results in the weld nugget quality and the welding time.
文摘Resistance Spot Welding (RSW) is a process commonly used for joining a stack of two or three metal sheets at desired spots. The weld is accomplished by holding the metallic workpieces together by applying pressure through the tips of a pair of electrodes and then passing a strong electric current for a short duration. Inconsistent weld and insufficient nugget size are some of the common problems associated with RSW. To overcome these problems, a new adaptive control scheme is proposed in this paper. It is based on an electrothermal dynamical model of the RSW process, and utilizes the principle of adaptive one-step-ahead control. It is basically a tracking controller that adjusts the weld current continuously to make sure that the temperature of the workpieces or the weld nugget tracks a desired reference temperature profile. The proposed control scheme is expected to reduce energy consumption by 5% or more per weld, which can result in significant energy savings for any application requiring a high volume of spot welds. The design steps are discussed in details. Also, results of some simulation studies are presented.
文摘A survey on the symptom and severity of the leaf spot disease of Pongamia pinnata L. was conducted in the nurseries of the Institute of Forestry and Environmental Sciences, University of Chittagong (IFESCU), Bangladesh Forest Research Institute (BFRI) and Aronnak Nursery in Chittagong. The highest infection percentage and disease index were found in IFESCU nursery, followed by BFRI and the lowest was recorded in Aronnak nursery. The associated organism of leaf spot disease of P. pinnata was isolated from the diseased plant parts and the pathogenicity was established with the isolated fungus. Colletorichum gloeosprioides Penz was proved to be pathogenic. The inhibition of mycelial growth of C. gloeosporioides was observed and identified as suitable fungicides (Bavistin, Cupravite and Dithane M-45) and doses (0.05, 0.10, 0.50, 1.00, 1.50 and 2.00). The lowest and highest mycelial growth were respectively found on Bavistin and on Cupravite at the concentration of 0.05 after 8th day of incubation. It indicates that out of the three tested fungicides, Bavistin showed most effective, followed by Diathane M-45, and Cupravite was ineffective for its very little inhibition on mycelial growth.
基金Acknowledgements The authors would like to thank for the financial support from the National Natural Science Foundation of China through document 51275418. The authors would also like to acknowledge professor Yang Siqian for providing discussion of the results for this study.
文摘An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistivity of the material, the thickness of workpiece and the spot spacing, and the shunt rate is outputted. A simplified calculation for the shunt rate was presented based on the feature of the constant-current resistance spot welding and the variation of the resistance in resistance spot welding process, and then the data generated by simplified calculation were used to train and adjust the neural network model. The neural network model proposed was used to predict the shunt rate in the spot welding of 20# mlid steel (in Chinese classification) (in 2. 0 mm thickness) and 10# mild steel (in 1.5 mm and 1.0 mm thickness). The maximum relative prediction errors are, respectively, 2. 83%, 1.77% and 3.67%. Shunt current compensation experiments were peoCormed based on the neural network prediction model proposed to check the diameter difference of nuggets. Experimental results show that maximum nugget diameter deviation is less than 4% for both 10# and 20# mlid steels with spot spacing of 30 mm and 50 mm.
基金The Program of Energy Research and Development (PERD) funded this study
文摘A workflow that helps identify potential production sweet spots in the Middle Bakken tight oil play is proposed based on analysis of large amounts of production data. The proposed approach is a multivariate statistical model that extracts relevant information from a training dataset of production wells to facilitate geological similarity comparison between economic and sub-economic production wells. The model is applied to the Middle Bakken tight oil play in southeastern Saskatchewan. Data screening for diagnostic geological indicators for sweet spots reveals that several geological factors indicative for conventional oil reservoirs seem to work for the Middle Bakken tight oil play as well. These factors include: a) the NE Torqunay-Rocanville Trend serving as a preferred regional migration path for connecting mature source rock in southern Williston Basin and the Middle Bakken tight reservoir in southeastern Saskatchewan; b) the oils in the Bakken tight reservoirs along the U.S. and Canada border are more likely from local matured Bakken source rocks; c) subtle structural components enhancing the convergence of dispersed hydrocarbons over a large area; d) top seal and lateral barrier improving preservation, thus favouring oil productivity; e) orientation of maximum horizontal stress coincident with the direction of the variogram spatial continuity in ultimate recoverable reserves, so the direction of horizontal well has a significant impact on the oil productivity.
基金This work was supported by the Shanghai Aerospace Science&Technology Innovation Fund[grant number SAST201363],and the Fundamental Research Funds for the Central Universities[grant number 30919012102 in part]We gratefully acknowledge the technical support provided by Hao-yu Wang,Wei-kang Chen and Zhi-jing Xu(Shanghai Space Propulsion Technology Research Institute,China).
文摘Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.However,conventional solid-propellant have difficulties in starting and interrupting combustion because combustion is autonomously sustained after ignition Herein,we proposed a new type of solid-propellant named laser-controlled solid propellant,which is sensitive to laser irradiation and can be started or interrupted by switching on/off the continuous wave laser.To demonstrate the feasibility and investigate the controllable combustion behaviors under different laser on/off conditions,the combus tion parameters including burning rate,ignition delay time and platform pressure were tested using pressure sensor,high-speed camera and thermographic camera.The results showed that the increase of laser-on or laser-off duration both will lead to the decrease of propellant combustion performance during re-ignition and re-combustion process.This is mainly attributed to the laser attenuation caused by the accumulation of combustion residue and the change of chamber ambient temperature.Simultaneously the multiple ignition tests revealed that the increased chamber ambient temperature after combustion can make up for the energy loss of laser attenuation and expansion of chamber cavity.However,the laser-controlled combustion performance of solid propellant displayed a decrease trend with the addi-tion of ignition times.Nevertheless,the results still exchibited good laser-controlled agility of laser-controlled solid propellant and manifested its inspiring potential in many aspects of space missions.
基金supported by the National Key Research and Development Program of China (2017YFD0201108, 2017YFD0200901)the National Natural Science Foundation of China (31672072, 31872015, 31750110455)+2 种基金the earmarked fund for China Agriculture Research System (CARS-02)the Key National R&D Programs of China-Key International Intergovernmental Scientific and Technological Innovation Cooperation Projects (2017YFE0104900)the Agriculture Research System of Shanghai, China (201710)
文摘Southern corn leaf blight(SCLB)disease caused by Cochliobolus heterostrophus is one of the major threats to corn production worldwide.The synergistic application of low toxic chemical fungicide and biocontrol agents could improve biocontrol stability and efficiency against plant diseases,which ultimately reduce use of chemical fungicide.Trichoderma spp.,well-known biocontrol fungi have been used to control some foliar diseases.However,few works have been reported on synergistic application of chemical fungicide and Trichoderma against foliar diseases.This study was aimed to investigate the control effect on the synergistic application of Trichoderma harzianum SH2303 and difenoconazole-propiconazole(DP)against SCLB.Results showed that the synergistic application of DP and SH2303 reduced the leaf spot area compared to the control.The efficacy of synergistic application of DP+SH2303 against SCLB could last for 15–20 d in pot trial under the greenhouse condition.Under the natural field condition,maize treated with DP+DP and DP+SH2303 showed 60%control,which was higher than that of SH2303+DP(45%)and SH2303+SH2303(35%).All these treatments induced the synthesis of defense-related enzymes(phenylalanine ammonia lyase(PAL),catalase(CAT),and superoxide dismutase(SOD))and the defence-related gene expression of SA pathway(PR1).Taken together the in-vitro leaf test and field trial,the control of SCLB by synergistic application of DP+SH2303 was similar to that of DP+DP.Among synergistic application,the sequential application of DP+SH2303 showed better control than the sequential application of SH2303+DP.It was concluded that the synergistic application of chemical fungicide(DP)and biocontrol agent(T.harzianum SH2303)could be used to reduce the chemical fungicide and to reduce the SCLB diseases in maize,which provided alternative approach to realize an eco-friendly controlling of the foliar disease.
文摘An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious variation based on the statistic standard deviation of residual gas temperatures within the specified simulation cycles and the function of cyclic variation is also inducted for the cyclic variation control. Because the degree of engine cyclic variation can be estimated qualitatively, the effective control means can be applied to appease the undesired cyclic variation. Simulation result shows that for a very serious cyclic variation through the proper adjustment of the spark angle and the cyclic variation will disappear.
基金the Global-Top Project,Development of Advanced Combustion Technology for Global Top Low Emission Vehicle(2016002070001)the Ministry of Environment(MOE)of Korea for financial support by the Center for Environmentally Friendly Vehicle(CEFV)
文摘Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxides (NOx) and particulate matter (PM) emissions. When natural gas (NG) is applied to a DF-PCCI engine, its low reactivity reduces the maximum pressure rise rate under high loads. However, the NG–diesel DF-PCCI engine suffers from low combustion efficiency under low loads. In this study, an injection strategy of fuel supply (NG and diesel) in a DF-PCCI engine was investigated in order to reduce both the fuel consumption and hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. A variation in the NG substitution and diesel start of energizing (SOE) was found to effectively control the formation of the fuel–air mixture. A double injection strategy of diesel was implemented to adjust the local reactivity of the mixture. Retardation of the diesel pilot SOE and a low fraction of the diesel pilot injection quantity were favorable for reducing the combustion loss. The introduction of exhaust gas recirculation (EGR) improved the fuel economy and reduced the NOx and PM emissions below Euro VI regulations by retarding the combustion phasing. The combination of an NG substitution of 40%, the double injection strategy of diesel, and a moderate EGR rate effectively improved the combustion efficiency and indicated efficiency, and reduced the HC and CO emissions under low load conditions.
基金Supported by Independent Project of Luzhou Branch of Sichuan Tobacco Company(20140105)
文摘This study aimed to investigate the effects of Radix Curcumae fungicides on tobacco brown spot and yield of flue-cured tobacco leaves. Through field experi- ments, control efficiency of Radix Curcumae fungicides against tobacco brown spot was investigated. The results showed that the average control efficiency of 400-fold, 600-fold and 800-fold Radix Curcumae fungicides against tobacco brown spot reached 37.83%, 34.09% and 24.32%, respectively. This study could provide the ba- sis for screening and application of plant-derived fungicides against tobacco brown spot.
基金This project is supported by Municipal Key Science Foundation of Shenyang,China(No.1041020-1-04)Provincial Natural Science Foundation of Liaoning,China(No.20031022).
文摘The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.
文摘The damage characteristics and occurrence regularity of radish alternaria leaf spot, black rot, soft rot, virus disease and hollowness are introduced in the paper, and the corresponding control method is proposed from two aspects of agricultural control and chemical control.
文摘Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. In this paper the assignment and theoretical investigations of the problems of crown forest fire spread in windy condition were carried out. In this context, a study—mathematical modeling—of the conditions of forest fire spreading that would make it possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and determine as well as the limiting condition of fire propagation in forest with fire break.
文摘In addition to conventional techniques,the prevention and control of Chinese rose black spot(Actinonema rosae)should be strengthened in the management of Chinese rose.The occurrence of Chinese rose black spot is closely related to plant residues,rainfall,cultivation conditions and varieties.On the basis of understanding the symptoms and occurrence regularity of Chinese rose black spot,combination measures of agricultural and chemical prevention and control should be taken.