We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in ...We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in a stationary and ergodic environmentξ.Under suitable conditions,we establish the following central limit theorems and results about the rates of convergence in probability or in law:(i)W-W_(n) with suitable normalization converges to the normal law N(0,1),and similar results also hold for W_(n+k)-W_(n) for each fixed k∈N^(*);(ii)for a branching process with immigration in a finite state random environment,if W_(1) has a finite exponential moment,then so does W,and the decay rate of P(|W-W_(n)|>ε)is supergeometric;(iii)there are normalizing constants an(ξ)(that we calculate explicitly)such that a_(n)(ξ)(W-W_(n))converges in law to a mixture of the Gaussian law.展开更多
提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于...提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于BBO的多目标进化模型。在模型中,结合栖息地个体间的Pareto支配关系对栖息地适应度指数进行了重新定义;为了保持栖息地种群的分布性,提出一种新的基于动态距离矩阵的分布性保持机制;同时,根据多目标优化的特点,提出了新的自适应迁入迁出率确定方式,动态迁移策略及分段logistic混沌变异策略。通过对测试函数ZDT和DTLZ的仿真实验表明,与现有多种多目标优化算法相比,MOBBO在解集的收敛性和分布的均匀性上均有明显改善,能够有效且高效地进行复杂多目标优化问题的求解。展开更多
基金supported by the National Natural Science Foundation of China(11571052,11731012)the Hunan Provincial Natural Science Foundation of China(2018JJ2417)the Open Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(2018MMAEZD02)。
文摘We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in a stationary and ergodic environmentξ.Under suitable conditions,we establish the following central limit theorems and results about the rates of convergence in probability or in law:(i)W-W_(n) with suitable normalization converges to the normal law N(0,1),and similar results also hold for W_(n+k)-W_(n) for each fixed k∈N^(*);(ii)for a branching process with immigration in a finite state random environment,if W_(1) has a finite exponential moment,then so does W,and the decay rate of P(|W-W_(n)|>ε)is supergeometric;(iii)there are normalizing constants an(ξ)(that we calculate explicitly)such that a_(n)(ξ)(W-W_(n))converges in law to a mixture of the Gaussian law.
文摘提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于BBO的多目标进化模型。在模型中,结合栖息地个体间的Pareto支配关系对栖息地适应度指数进行了重新定义;为了保持栖息地种群的分布性,提出一种新的基于动态距离矩阵的分布性保持机制;同时,根据多目标优化的特点,提出了新的自适应迁入迁出率确定方式,动态迁移策略及分段logistic混沌变异策略。通过对测试函数ZDT和DTLZ的仿真实验表明,与现有多种多目标优化算法相比,MOBBO在解集的收敛性和分布的均匀性上均有明显改善,能够有效且高效地进行复杂多目标优化问题的求解。
基金The Key University Science Research Project of Anhui Province(KJ2016A705)the Key Projects of Anhui Province University Outstanding Youth Talent Support Program(gxyq ZD2016317)+1 种基金the Science Research Project of Tongling University(2014tlxy26)the College Student Innovation and Entrepreneurship Training Program(201510383030)