期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
ResNeSt-biGRU: An Intrusion Detection Model Based on Internet of Things
1
作者 Yan Xiang Daofeng Li +2 位作者 Xinyi Meng Chengfeng Dong Guanglin Qin 《Computers, Materials & Continua》 SCIE EI 2024年第4期1005-1023,共19页
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has... The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems. 展开更多
关键词 Internet of things cyberattack intrusion detection internet security
下载PDF
Internet of things intrusion detection model and algorithm based on cloud computing and multi-feature extraction extreme learning machine 被引量:1
2
作者 Haifeng Lin Qilin Xue +1 位作者 Jiayin Feng Di Bai 《Digital Communications and Networks》 SCIE CSCD 2023年第1期111-124,共14页
With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems... With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems,such as large assets,complex and diverse structures,and lack of computing resources.Traditional network intrusion detection systems cannot meet the security needs of IoT applications.In view of this situation,this study applies cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance.Usually,traditional intrusion detection algorithms require considerable time for training,and these intrusion detection algorithms are not suitable for cloud computing due to the limited computing power and storage capacity of cloud nodes;therefore,it is necessary to study intrusion detection algorithms with low weights,short training time,and high detection accuracy for deployment and application on cloud nodes.An appropriate classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a prerequisite for the system to respond to intrusion and reduce intrusion threats.This paper discusses the problems related to IoT intrusion prevention in cloud computing environments.Based on the analysis of cloud computing security threats,this study extensively explores IoT intrusion detection,cloud node monitoring,and intrusion response in cloud computing environments by using cloud computing,an improved extreme learning machine,and other methods.We use the Multi-Feature Extraction Extreme Learning Machine(MFE-ELM)algorithm for cloud computing,which adds a multi-feature extraction process to cloud servers,and use the deployed MFE-ELM algorithm on cloud nodes to detect and discover network intrusions to cloud nodes.In our simulation experiments,a classical dataset for intrusion detection is selected as a test,and test steps such as data preprocessing,feature engineering,model training,and result analysis are performed.The experimental results show that the proposed algorithm can effectively detect and identify most network data packets with good model performance and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes.Furthermore,it can enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time,so that further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud cluster. 展开更多
关键词 Internet of things Cloud Computing intrusion Prevention intrusion Detection Extreme Learning Machine
下载PDF
Intelligent Intrusion Detection System for Industrial Internet of Things Environment 被引量:1
3
作者 R.Gopi R.Sheeba +4 位作者 K.Anguraj T.Chelladurai Haya Mesfer Alshahrani Nadhem Nemri Tarek Lamoudan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1567-1582,共16页
Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request ar... Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques. 展开更多
关键词 intrusion detection system artificial intelligence machine learning industry 4.0 internet of things
下载PDF
Optimal Wavelet Neural Network-Based Intrusion Detection in Internet of Things Environment
4
作者 Heba G.Mohamed Fadwa Alrowais +3 位作者 Mohammed Abdullah Al-Hagery Mesfer Al Duhayyim Anwer Mustafa Hilal Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第5期4467-4483,共17页
As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause ... As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause accidents.As typical intrusion detection system(IDS)studies can be frequently designed for working well on databases,it can be unknown if they intend to work well in altering network environments.Machine learning(ML)techniques are depicted to have a higher capacity at assisting mitigate an attack on IoT device and another edge system with reasonable accuracy.This article introduces a new Bird Swarm Algorithm with Wavelet Neural Network for Intrusion Detection(BSAWNN-ID)in the IoT platform.The main intention of the BSAWNN-ID algorithm lies in detecting and classifying intrusions in the IoT platform.The BSAWNN-ID technique primarily designs a feature subset selection using the coyote optimization algorithm(FSS-COA)to attain this.Next,to detect intrusions,the WNN model is utilized.At last,theWNNparameters are optimally modified by the use of BSA.Awidespread experiment is performed to depict the better performance of the BSAWNNID technique.The resultant values indicated the better performance of the BSAWNN-ID technique over other models,with an accuracy of 99.64%on the UNSW-NB15 dataset. 展开更多
关键词 Internet of things wavelet neural network SECURITY intrusion detection machine learning
下载PDF
Internet of Things Intrusion Detection System Based on Convolutional Neural Network
5
作者 Jie Yin Yuxuan Shi +5 位作者 Wen Deng Chang Yin Tiannan Wang Yuchen Song Tianyao Li Yicheng Li 《Computers, Materials & Continua》 SCIE EI 2023年第4期2119-2135,共17页
In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT d... In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT devices exposes them to more serious security concerns. First, aconvolutional neural network intrusion detection system for IoT devices isproposed. After cleaning and preprocessing the NSL-KDD dataset, this paperuses feature engineering methods to select appropriate features. Then, basedon the combination of DCNN and machine learning, this paper designs acloud-based loss function, which adopts a regularization method to preventoverfitting. The model consists of one input layer, two convolutional layers,two pooling layers and three fully connected layers and one output layer.Finally, a framework that can fully consider the user’s privacy protection isproposed. The framework can only exchange model parameters or intermediateresults without exchanging local individuals or sample data. This paperfurther builds a global model based on virtual fusion data, so as to achievea balance between data privacy protection and data sharing computing. Theperformance indicators such as accuracy, precision, recall, F1 score, and AUCof the model are verified by simulation. The results show that the model ishelpful in solving the problem that the IoT intrusion detection system cannotachieve high precision and low cost at the same time. 展开更多
关键词 Internet of things intrusion detection system convolutional neural network federated learning
下载PDF
AID4I:An Intrusion Detection Framework for Industrial Internet of Things Using Automated Machine Learning
6
作者 Anil Sezgin Aytug Boyacı 《Computers, Materials & Continua》 SCIE EI 2023年第8期2121-2143,共23页
By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The be... By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The benefit of anomaly-based IDS is that they are able to recognize zeroday attacks due to the fact that they do not rely on a signature database to identify abnormal activity.In order to improve control over datasets and the process,this study proposes using an automated machine learning(AutoML)technique to automate the machine learning processes for IDS.Our groundbreaking architecture,known as AID4I,makes use of automatic machine learning methods for intrusion detection.Through automation of preprocessing,feature selection,model selection,and hyperparameter tuning,the objective is to identify an appropriate machine learning model for intrusion detection.Experimental studies demonstrate that the AID4I framework successfully proposes a suitablemodel.The integrity,security,and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities.With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security,AID4I is a powerful and effective instrument for intrusion detection.In preprocessing module,three distinct imputation methods are utilized to handle missing data,ensuring the robustness of the intrusion detection system in the presence of incomplete information.Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm.The Parameter Optimization module encompasses a diverse set of 14 classification methods,allowing for thorough exploration and optimization of the parameters associated with each algorithm.By carefully tuning these parameters,the framework enhances its adaptability and accuracy in identifying potential intrusions.Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39%on public datasets,outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing. 展开更多
关键词 Automated machine learning intrusion detection system industrial internet of things parameter optimization
下载PDF
Quantum Cat Swarm Optimization Based Clustering with Intrusion Detection Technique for Future Internet of Things Environment
7
作者 Mohammed Basheri Mahmoud Ragab 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3783-3798,共16页
The Internet of Things(IoT)is one of the emergent technologies with advanced developments in several applications like creating smart environments,enabling Industry 4.0,etc.As IoT devices operate via an inbuilt and li... The Internet of Things(IoT)is one of the emergent technologies with advanced developments in several applications like creating smart environments,enabling Industry 4.0,etc.As IoT devices operate via an inbuilt and limited power supply,the effective utilization of available energy plays a vital role in designing the IoT environment.At the same time,the communication of IoT devices in wireless mediums poses security as a challenging issue.Recently,intrusion detection systems(IDS)have paved the way to detect the presence of intrusions in the IoT environment.With this motivation,this article introduces a novel QuantumCat SwarmOptimization based Clustering with Intrusion Detection Technique(QCSOBC-IDT)for IoT environment.The QCSOBC-IDT model aims to achieve energy efficiency by clustering the nodes and security by intrusion detection.Primarily,the QCSOBC-IDT model presents a new QCSO algorithm for effectively choosing cluster heads(CHs)and organizing a set of clusters in the IoT environment.Besides,the QCSO algorithm computes a fitness function involving four parameters,namely energy efficiency,inter-cluster distance,intra-cluster distance,and node density.A harmony search algorithm(HSA)with a cascaded recurrent neural network(CRNN)model can be used for an effective intrusion detection process.The design of HSA assists in the optimal selection of hyperparameters related to the CRNN model.A detailed experimental analysis of the QCSOBC-IDT model ensured its promising efficiency compared to existing models. 展开更多
关键词 Internet of things energy efficiency CLUSTERING intrusion detection deep learning security
下载PDF
Intelligent Intrusion Detection System for the Internet of Medical Things Based on Data-Driven Techniques
8
作者 Okba Taouali Sawcen Bacha +4 位作者 Khaoula Ben Abdellafou Ahamed Aljuhani Kamel Zidi Rehab Alanazi Mohamed Faouzi Harkat 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1593-1609,共17页
Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining ... Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge.However,due to the computational resources being limited,an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms.Therefore,designing and developing a lightweight detection mechanism is crucial.To address the aforementioned challenges,a new lightweight IDS approach is developed to effectively combat a diverse range of cyberattacks in IoMT networks.The proposed anomaly-based IDS is divided into three steps:pre-processing,feature selection,and decision.In the pre-processing phase,data cleaning and normalization are performed.In the feature selection step,the proposed approach uses two data-driven kernel techniques:kernel principal component analysis and kernel partial least square techniques to reduce the dimension of extracted features and to ameliorate the detection results.Therefore,in decision step,in order to classify whether the traffic flow is normal or malicious the kernel extreme learning machine is used.To check the efficiency of the developed detection scheme,a modern IoMT dataset named WUSTL-EHMS-2020 is considered to evaluate and discuss the achieved results.The proposed method achieved 99.9%accuracy,99.8%specificity,100%Sensitivity,99.9 F-score. 展开更多
关键词 Machine learning data-driven technique KPCA KPLS intrusion detection IoT Internet of Medical things(IoMT)
下载PDF
Deep Transfer Learning Techniques in Intrusion Detection System-Internet of Vehicles: A State-of-the-Art Review
9
作者 Wufei Wu Javad Hassannataj Joloudari +8 位作者 Senthil Kumar Jagatheesaperumal Kandala N.V.P.SRajesh Silvia Gaftandzhieva Sadiq Hussain Rahimullah Rabih Najibullah Haqjoo Mobeen Nazar Hamed Vahdat-Nejad Rositsa Doneva 《Computers, Materials & Continua》 SCIE EI 2024年第8期2785-2813,共29页
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide... The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks. 展开更多
关键词 Cyber-attacks internet of things internet of vehicles intrusion detection system
下载PDF
An Optimized Approach to Deep Learning for Botnet Detection and Classification for Cybersecurity in Internet of Things Environment
10
作者 Abdulrahman Alzahrani 《Computers, Materials & Continua》 SCIE EI 2024年第8期2331-2349,共19页
The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent ... The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process. 展开更多
关键词 Botnet detection internet of things gorilla troops optimizer hyperparameter tuning intrusion detection system
下载PDF
Intrusion Detection Systems in Internet of Things and Mobile Ad-Hoc Networks 被引量:2
11
作者 Vasaki Ponnusamy Mamoona Humayun +2 位作者 NZJhanjhi Aun Yichiet Maram Fahhad Almufareh 《Computer Systems Science & Engineering》 SCIE EI 2022年第3期1199-1215,共17页
Internet of Things(IoT)devices work mainly in wireless mediums;requiring different Intrusion Detection System(IDS)kind of solutions to leverage 802.11 header information for intrusion detection.Wireless-specific traff... Internet of Things(IoT)devices work mainly in wireless mediums;requiring different Intrusion Detection System(IDS)kind of solutions to leverage 802.11 header information for intrusion detection.Wireless-specific traffic features with high information gain are primarily found in data link layers rather than application layers in wired networks.This survey investigates some of the complexities and challenges in deploying wireless IDS in terms of data collection methods,IDS techniques,IDS placement strategies,and traffic data analysis techniques.This paper’s main finding highlights the lack of available network traces for training modern machine-learning models against IoT specific intrusions.Specifically,the Knowledge Discovery in Databases(KDD)Cup dataset is reviewed to highlight the design challenges of wireless intrusion detection based on current data attributes and proposed several guidelines to future-proof following traffic capture methods in the wireless network(WN).The paper starts with a review of various intrusion detection techniques,data collection methods and placement methods.The main goal of this paper is to study the design challenges of deploying intrusion detection system in a wireless environment.Intrusion detection system deployment in a wireless environment is not as straightforward as in the wired network environment due to the architectural complexities.So this paper reviews the traditional wired intrusion detection deployment methods and discusses how these techniques could be adopted into the wireless environment and also highlights the design challenges in the wireless environment.The main wireless environments to look into would be Wireless Sensor Networks(WSN),Mobile Ad Hoc Networks(MANET)and IoT as this are the future trends and a lot of attacks have been targeted into these networks.So it is very crucial to design an IDS specifically to target on the wireless networks. 展开更多
关键词 Internet of things MANET intrusion detection systems wireless networks
下载PDF
Federated Blockchain Model for Cyber Intrusion Analysis in Smart Grid Networks 被引量:1
12
作者 N.Sundareswaran S.Sasirekha 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2129-2143,共15页
Smart internet of things(IoT)devices are used to manage domestic and industrial energy needs using sustainable and renewable energy sources.Due to cyber infiltration and a lack of transparency,the traditional transacti... Smart internet of things(IoT)devices are used to manage domestic and industrial energy needs using sustainable and renewable energy sources.Due to cyber infiltration and a lack of transparency,the traditional transaction process is inefficient,unsafe and expensive.Smart grid systems are now efficient,safe and transparent owing to the development of blockchain(BC)technology and its smart contract(SC)solution.In this study,federated learning extreme gradient boosting(FL-XGB)framework has been developed along with BC to learn the intrusion inside the smart energy system.FL is best suited for a decentralized BC-enabled system to adapt learning models for trustworthy and reliable transac-tions.Many features and attributes of the Third International Knowledge Discov-ery and Data mining Tools Competition(KDD Cup 1999)dataset have been used in this study to perform experimental analysis.The likelihood of intrusions in the network is mathematically stated.The participant nodes run the BC based FL-Smart Contract(SC)algorithms to detect network intrusions.FL provided aggre-gated learning results from the experiment that was 99%accurate in predicting network intrusion.The experimentally determined block storage gain and retrieval gain were 97.5%and 95.4%respectively.The intrusion in the smart grid network was evaluated,and the data indicated that there was 1.2%illegal access.More-over,the learning system’s accuracy,retrieval and storage intrusions,legal access and transaction processing times were considered for comparison.The proposed system outperformed contemporary research-developed systems targeted for the same application.Therefore,this study provides a guaranteed intrusion learning system and secure transaction system for smart grids. 展开更多
关键词 Blockchain federated learning system intrusion detection internet of things smart grids
下载PDF
Optimal Fuzzy Logic Enabled Intrusion Detection for Secure IoT-Cloud Environment
13
作者 Fatma S.Alrayes Nuha Alshuqayran +5 位作者 Mohamed K Nour Mesfer Al Duhayyim Abdullah Mohamed Amgad Atta Abdelmageed Mohammed Gouse Pasha Mohammed Ishfaq Yaseen 《Computers, Materials & Continua》 SCIE EI 2023年第3期6737-6753,共17页
Recently,Internet of Things(IoT)devices have developed at a faster rate and utilization of devices gets considerably increased in day to day lives.Despite the benefits of IoT devices,security issues remain challenging... Recently,Internet of Things(IoT)devices have developed at a faster rate and utilization of devices gets considerably increased in day to day lives.Despite the benefits of IoT devices,security issues remain challenging owing to the fact that most devices do not include memory and computing resources essential for satisfactory security operation.Consequently,IoT devices are vulnerable to different kinds of attacks.A single attack on networking system/device could result in considerable data to data security and privacy.But the emergence of artificial intelligence(AI)techniques can be exploited for attack detection and classification in the IoT environment.In this view,this paper presents novel metaheuristics feature selection with fuzzy logic enabled intrusion detection system(MFSFL-IDS)in the IoT environment.The presented MFSFL-IDS approach purposes for recognizing the existence of intrusions and accomplish security in the IoT environment.To achieve this,the MFSFL-IDS model employs data pre-processing to transform the data into useful format.Besides,henry gas solubility optimization(HGSO)algorithm is applied as a feature selection approach to derive useful feature vectors.Moreover,adaptive neuro fuzzy inference system(ANFIS)technique was utilized for the recognition and classification of intrusions in the network.Finally,binary bat algorithm(BBA)is exploited for adjusting parameters involved in the ANFIS model.A comprehensive experimental validation of the MFSFL-IDS model is carried out using benchmark dataset and the outcomes are assessed under distinct aspects.The experimentation outcomes highlighted the superior performance of the MFSFL-IDS model over recentapproaches with maximum accuracy of 99.80%. 展开更多
关键词 Cloud computing security fuzzy logic intrusion detection internet of things metaheuristics
下载PDF
Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network
14
作者 Nasir Sayed Muhammad Shoaib +3 位作者 Waqas Ahmed Sultan Noman Qasem Abdullah M.Albarrak Faisal Saeed 《Computers, Materials & Continua》 SCIE EI 2023年第1期1351-1374,共24页
Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to secure.Moreover,the rapid growth of IoT devices in homes increases the risk of cyber-attacks.Intrusion det... Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to secure.Moreover,the rapid growth of IoT devices in homes increases the risk of cyber-attacks.Intrusion detection systems(IDS)are commonly employed to prevent cyberattacks.These systems detect incoming attacks and instantly notify users to allow for the implementation of appropriate countermeasures.Attempts have been made in the past to detect new attacks using machine learning and deep learning techniques,however,these efforts have been unsuccessful.In this paper,we propose two deep learning models to automatically detect various types of intrusion attacks in IoT networks.Specifically,we experimentally evaluate the use of two Convolutional Neural Networks(CNN)to detect nine distinct types of attacks listed in the NF-UNSW-NB15-v2 dataset.To accomplish this goal,the network stream data were initially converted to twodimensional images,which were then used to train the neural network models.We also propose two baseline models to demonstrate the performance of the proposed models.Generally,both models achieve high accuracy in detecting the majority of these nine attacks. 展开更多
关键词 Internet of things intrusion detection system deep learning convolutional neural network supervised learning
下载PDF
Modified Buffalo Optimization with Big Data Analytics Assisted Intrusion Detection Model
15
作者 R.Sheeba R.Sharmila +1 位作者 Ahmed Alkhayyat Rami Q.Malik 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1415-1429,共15页
Lately,the Internet of Things(IoT)application requires millions of structured and unstructured data since it has numerous problems,such as data organization,production,and capturing.To address these shortcomings,big d... Lately,the Internet of Things(IoT)application requires millions of structured and unstructured data since it has numerous problems,such as data organization,production,and capturing.To address these shortcomings,big data analytics is the most superior technology that has to be adapted.Even though big data and IoT could make human life more convenient,those benefits come at the expense of security.To manage these kinds of threats,the intrusion detection system has been extensively applied to identify malicious network traffic,particularly once the preventive technique fails at the level of endpoint IoT devices.As cyberattacks targeting IoT have gradually become stealthy and more sophisticated,intrusion detection systems(IDS)must continually emerge to manage evolving security threats.This study devises Big Data Analytics with the Internet of Things Assisted Intrusion Detection using Modified Buffalo Optimization Algorithm with Deep Learning(IDMBOA-DL)algorithm.In the presented IDMBOA-DL model,the Hadoop MapReduce tool is exploited for managing big data.The MBOA algorithm is applied to derive an optimal subset of features from picking an optimum set of feature subsets.Finally,the sine cosine algorithm(SCA)with convolutional autoencoder(CAE)mechanism is utilized to recognize and classify the intrusions in the IoT network.A wide range of simulations was conducted to demonstrate the enhanced results of the IDMBOA-DL algorithm.The comparison outcomes emphasized the better performance of the IDMBOA-DL model over other approaches. 展开更多
关键词 Big data analytics internet of things SECURITY intrusion detection deep learning
下载PDF
Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning Model for Intrusion Detection System
16
作者 Mahmoud Ragab Sultanah M.Alshammari Abdullah S.Al-Malaise Al-Ghamdi 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2497-2512,共16页
The Internet of Things(IoT)system has confronted dramatic growth in high dimensionality and data traffic.The system named intrusion detection systems(IDS)is broadly utilized for the enhancement of security posture in ... The Internet of Things(IoT)system has confronted dramatic growth in high dimensionality and data traffic.The system named intrusion detection systems(IDS)is broadly utilized for the enhancement of security posture in an IT infrastructure.An IDS is a practical and suitable method for assuring network security and identifying attacks by protecting it from intrusive hackers.Nowadays,machine learning(ML)-related techniques were used for detecting intrusion in IoTs IDSs.But,the IoT IDS mechanism faces significant challenges because of physical and functional diversity.Such IoT features use every attribute and feature for IDS self-protection unrealistic and difficult.This study develops a Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning(MM-WMVEDL)model for IDS.The proposed MM-WMVEDL technique aims to discriminate distinct kinds of attacks in the IoT environment.To attain this,the presented MM-WMVEDL technique implements min-max normalization to scale the input dataset.For feature selection purposes,the MM-WMVEDL technique exploits the Harris hawk optimization-based elite fractional derivative mutation(HHO-EFDM)technique.In the presented MM-WMVEDL technique,a Bi-directional long short-term memory(BiLSTM),extreme learning machine(ELM)and an ensemble of gated recurrent unit(GRU)models take place.A wide range of simulation analyses was performed on CICIDS-2017 dataset to exhibit the promising performance of the MM-WMVEDL technique.The comparison study pointed out the supremacy of the MM-WMVEDL method over other recent methods with accuracy of 99.67%. 展开更多
关键词 Internet of things intrusion detection system machine learning ensemble deep learning metaheuristics
下载PDF
Modified Garden Balsan Optimization Based Machine Learning for Intrusion Detection
17
作者 Mesfer Al Duhayyim Jaber S.Alzahrani +5 位作者 Hanan Abdullah Mengash Mrim M.Alnfiai Radwa Marzouk Gouse Pasha Mohammed Mohammed Rizwanullah Amgad Atta Abdelmageed 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1471-1485,共15页
The Internet of Things(IoT)environment plays a crucial role in the design of smart environments.Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments.Se... The Internet of Things(IoT)environment plays a crucial role in the design of smart environments.Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments.Security susceptibilities in IoT-based systems pose security threats which affect smart environment applications.Intrusion detection systems(IDS)can be used for IoT environments to mitigate IoT-related security attacks which use few security vulnerabilities.This paper introduces a modified garden balsan optimizationbased machine learning model for intrusion detection(MGBO-MLID)in the IoT cloud environment.The presented MGBO-MLID technique focuses on the identification and classification of intrusions in the IoT cloud atmosphere.Initially,the presented MGBO-MLID model applies min-max normalization that can be utilized for scaling the features in a uniform format.In addition,the MGBO-MLID model exploits the MGBO algorithm to choose the optimal subset of features.Moreover,the attention-based bidirectional long short-term(ABiLSTM)method can be utilized for the detection and classification of intrusions.At the final level,the Aquila optimization(AO)algorithm is applied as a hyperparameter optimizer to fine-tune the ABiLSTM methods.The experimental validation of the MGBO-MLID method is tested using a benchmark dataset.The extensive comparative study reported the betterment of the MGBO-MLID algorithm over recent approaches. 展开更多
关键词 Deep learning internet of things cloud computing feature selection intrusion detection
下载PDF
Performance Analysis of Intrusion Detection System in the IoT Environment Using Feature Selection Technique
18
作者 Moody Alhanaya Khalil Hamdi Ateyeh Al-Shqeerat 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3709-3724,共16页
The increasing number of security holes in the Internet of Things(IoT)networks creates a question about the reliability of existing network intrusion detection systems.This problem has led to the developing of a resea... The increasing number of security holes in the Internet of Things(IoT)networks creates a question about the reliability of existing network intrusion detection systems.This problem has led to the developing of a research area focused on improving network-based intrusion detection system(NIDS)technologies.According to the analysis of different businesses,most researchers focus on improving the classification results of NIDS datasets by combining machine learning and feature reduction techniques.However,these techniques are not suitable for every type of network.In light of this,whether the optimal algorithm and feature reduction techniques can be generalized across various datasets for IoT networks remains.The paper aims to analyze the methods used in this research and whether they can be generalized to other datasets.Six ML models were used in this study,namely,logistic regression(LR),decision trees(DT),Naive Bayes(NB),random forest(RF),K-nearest neighbors(KNN),and linear SVM.The primary detection algorithms used in this study,Principal Component(PCA)and Gini Impurity-Based Weighted Forest(GIWRF)evaluated against three global ToN-IoT datasets,UNSW-NB15,and Bot-IoT datasets.The optimal number of dimensions for each dataset was not studied by applying the PCA algorithm.It is stated in the paper that the selection of datasets affects the performance of the FE techniques and detection algorithms used.Increasing the efficiency of this research area requires a comprehensive standard feature set that can be used to improve quality over time. 展开更多
关键词 Machine learning internet of things intrusion detection system feature selection technique
下载PDF
Improved Ant Colony Optimization and Machine Learning Based Ensemble Intrusion Detection Model
19
作者 S.Vanitha P.Balasubramanie 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期849-864,共16页
Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification... Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain.Machine Learning Based Ensemble Intrusion Detection(MLEID)method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport(MQTT)and Hyper-Text Transfer Proto-col(HTTP)protocols.The proposed work has two significant contributions which are a selection of features and detection of attacks.New features are chosen from Improved Ant Colony Optimization(IACO)in the feature selection,and then the detection of attacks is carried out based on a combination of their possible proper-ties.The IACO approach is focused on defining the attacker’s important features against HTTP and MQTT.In the IACO algorithm,the constant factor is calculated against HTTP and MQTT based on the mean function for each element.Attack detection,the performance of several machine learning models are Distance Deci-sion Tree(DDT),Adaptive Neuro-Fuzzy Inference System(ANFIS)and Mahala-nobis Distance Support Vector Machine(MDSVM)were compared with predicting accurate attacks on the IoT network.The outcomes of these classifiers are combined into the ensemble model.The proposed MLEID strategy has effec-tively established malicious incidents.The UNSW-NB15 dataset is used to test the MLEID technique using data from simulated IoT sensors.Besides,the pro-posed MLEID technique has a greater detection rate and an inferior rate of false-positive compared to other conventional techniques. 展开更多
关键词 Network intrusion detection system(NIDS) internet of things(IOT) ensemble learning statisticalflow features BOTNET ensemble technique improved ant colony optimization(IACO) feature selection
下载PDF
DeepIoT.IDS:Hybrid Deep Learning for Enhancing IoT Network Intrusion Detection 被引量:2
20
作者 Ziadoon K.Maseer Robiah Yusof +3 位作者 Salama A.Mostafa Nazrulazhar Bahaman Omar Musa Bander Ali Saleh Al-rimy 《Computers, Materials & Continua》 SCIE EI 2021年第12期3945-3966,共22页
With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of... With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of the network traffic data and access points.Recently,researchers have suggested deep learning(DL)algorithms to define intrusion features through training empirical data and learning anomaly patterns of attacks.However,due to the high dynamics and imbalanced nature of the data,the existing DL classifiers are not completely effective at distinguishing between abnormal and normal behavior line connections for modern networks.Therefore,it is important to design a self-adaptive model for an intrusion detection system(IDS)to improve the detection of attacks.Consequently,in this paper,a novel hybrid weighted deep belief network(HW-DBN)algorithm is proposed for building an efficient and reliable IDS(DeepIoT.IDS)model to detect existing and novel cyberattacks.The HW-DBN algorithm integrates an improved Gaussian–Bernoulli restricted Boltzmann machine(Deep GB-RBM)feature learning operator with a weighted deep neural networks(WDNN)classifier.The CICIDS2017 dataset is selected to evaluate the DeepIoT.IDS model as it contains multiple types of attacks,complex data patterns,noise values,and imbalanced classes.We have compared the performance of the DeepIoT.IDS model with three recent models.The results show the DeepIoT.IDS model outperforms the three other models by achieving a higher detection accuracy of 99.38%and 99.99%for web attack and bot attack scenarios,respectively.Furthermore,it can detect the occurrence of low-frequency attacks that are undetectable by other models. 展开更多
关键词 Cyberattacks internet of things intrusion detection system deep learning neural network supervised and unsupervised deep learning
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部